
I TECH COMPUTER EDUCATION       SQL 

1 

 

 

 

 

INDEX 
 
 
 
 

INTRODUCTIObΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.Χ.ΧΧ.ΧΧ02 

 
A ROUGH GUIDE TO SQLΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.Χ.Χ.ΧΧΧмм 

 
CREATING AND MAINTAINING TABL9{ΧΧΧΧΧΧΧΧΧΧΧ..ΧΧΦ.ΧΧ.24 

 
QUERYING SQL TABL9{ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧ..45 

 
ADDING AND UPDATING DATAΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ...Χ..105 

 
DATA INTEGRITYΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.Χ.Χ.113 

 
VIEWSΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧ123 

 
DATABASE SECURIŢ ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.Χ.135 

 
TRANSACTION PROCESSINGΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧ.145 

 
THE DATABASE SYSTEM CATALODΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧ..155 

 
EMBEDDING SQL IN A HOST LANGUAGEΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧΧм60 



I TECH COMPUTER EDUCATION       SQL 

2 

 

 

 

 

INTRODUCTION 
 
 
The Structured Query Language, SQL is a query language which is used with relational 

databases. This chapter starts by describing some of the terms used in data processing 

and how they relate to SQL. The later part of this chapter describes relational databases 

and how SQL is used to query them. 
 

 

"A Collection of Related Data": 

Databases and Database Management Systems. 
 
 
Let's start from basics. What is a database? In very general terms, a database is a 

collection of related data. Notice the word related, this implies that the collection of 

letters on this page do not by themselves constitute a database. But if we think of them 

as a collection of letters arranged to form words, then they can be conceptualized as 

data in a database. Using similar reasoning, we can also say that a tome such as a 

telephone directory is also a database. It is a database first, because it is a collection of 

letters that form words and second, because it is an alphabetical listing of people's 

names, their addresses and their telephone numbers. How we think of a database 

depends on what use we want to make of the information that it contains. 
 

 
So far, we have talked about a database in it's broadest sense. This very general 

definition is not what most people mean when they talk about a database. In this 

electronic age, the word database has become synonymous with the term 

"computerised database". Collins English Dictionary describes a database as "A store of 

a large amount of information, esp. in a form that can be handled by a computer." In 

this book, we will be dealing only with computerised databases. In keeping with popular 

trend though, we will be using the word database to refer to a computerised database. 
 

 
A database (computerised database remember) by itself, is not much use. The data is 

stored electronically on the computer's disk in a format which we humans cannot read 

or understand directly. What we need is some way of accessing this data and 

converting it into a form which we do understand. This is the job of the database 

management system or DBMS for short. A DBMS is essentially a suite of programs that 

act as the interface between the human operator and the data held in the database. 

Using the DBMS, it is possible to retrieve useful information, update or delete obsolete 



I TECH COMPUTER EDUCATION       SQL 

3 

 

 

 
 

information and add new information to the database. As well as data entry and 

retrieval, the DBMS plays an important role in maintaining the overall integrity of the 

data in the database. The simplest example of is ensuring that the values entered into 

the database conform to the data types that are specified. For example, in the 

telephone book database, the DBMS might have to ensure that each phone number 

entered conforms to a set format of XXX-XXXXXXX where X represents an integer. 
 

 

"The Database as a Collection of Tables": 

Relational databases and SQL. 
 

 
In the early days of computerized databases, all large database systems conformed to 

either the network data model or the hierarchical data model. We will not be discussing 

the technical details of these models except to say that they are quite complex and not 

very flexible. One of the main drawbacks of these databases was that in order to 

retrieve information, the user had to have an idea of where in the database the data 

was stored. This meant that data processing and information retrieval was a technical 

job which was beyond the ability of the average office manager. In those days life was 

simple. data processing staff were expected to prepared the annual or monthly or 

weekly reports and managers were expected to formulate and implement day to day 

business strategy according to the information contained in the reports. Computer 

literate executives were rare and DP staff with business sense were even more rare. This 

was the state of affairs before the advent of relational databases. 
 

 
The relational data model was introduced in 1970, E. F. Codd, a research fellow 

working for IBM, in his article `A Relational Model of Data for Large Shared Databanks'. 

The relational database model represented the database as a collection of tables which 

related to one another. 
 

 
Unlike network and hierarchical databases, the relational database is quite intuitive to 

use, with data organised into tables, columns and rows. An example of a relational 

database table is shown in Figure. We can see just by looking at Figure what 

the table is. The table is a list of people's names and telephone numbers. It is similar to 

how we might go about the task of jotting down the phone numbers of some of our 

friends, in the back of our diary for example. 



I TECH COMPUTER EDUCATION       SQL 

4 

 

 

 
 

NUM SURNAME FIRSTNAME PHONE_NUMBER 

--- ------- --------- ------------ ------------ 

1 Jones Frank 9635 

2 Bates Norman 8313 

3 Clark Brian 2917 

4 Stonehouse Mark 3692 

5 Warwick Rita 3487 

 
The relational data model consists of a number of intuitive concepts for storing any type 

of data in a database, along with a number of functions to manipulate the information. 
 

 
The relational data model as proposed by Codd provided the basic concepts for a new 

database management system, the relational database management system (RDBMS). 

Soon after the relational model was defined, a number of relational database languages 

were developed and used for instructing the RDBMS. Structured Query Language 

being one of them. 
 

 

The SQL language is so inextricably tied to relational database theory that it is 

impossible to discuss it without also discussing the relational data model. The next two 

sections briefly describe some of the concepts of this model. 
 

 

Tables, columns and rows. 
We have already seen that a relational database stores data in tables. Each column of 

the table represent an attribute, SURNAME, FIRSTNAME, PHONE_NUMBER for example. 

Each row in the table is a record. In the table in Figure, each row is a record of one 

person. A single table with a column and row structure, does not represent a relational 

database. Technically, this is known as a flat file or card index type database. Relational 

databases have several tables with interrelating data. Suppose that the information in 

the table of Figure is actually the list of people working in the company with their 

telephone extensions. Now we get an idea that this simple table is actually a small part 

of the overall database, the personnel database. Another table, such as the one in 

Figure could contain additional details on the persons listed in the first table. 



I TECH COMPUTER EDUCATION       SQL 

5 

 

 

 
 

NUM D_O_B DEPT GRADE 

--- ----- ---- ----- 

2 12/10/63 ENG 4 

5 07/05/50 DESIGN 7 

3 03/11/45 SALES 9 

1 09/03/73 ENG 2 

 

The Primary key and the foreign Key. 
The two tables described in the previous section and shown in both the Figures , now 

constitute a relational database. Of course, in a real personnel database, you would 

need to store a great deal more information and would thus need a lot more related 

tables. 
 

 
Notice that the first column in each table is the NUM column. The information stored in 

NUM does not really have anything to do with the person's record. Why is it there? The 

reason is that NUM is used to uniquely identify each person's record. We could have 

used the person's name, but chances are that in a large company, there would be more 

than one person with the same name. NUM is known as the primary key for the table of 

Figure. For the table of Figure, where a primary key of another table is used to relate 

data, NUM is a called a foreign key. 
 

 
The primary keys and foreign keys are a very important part of relational databases. 

They are the fields that relate tables to each other. In the table of Figure for example, 

we know that the first record is for Norman Bates because the value for NUM is 2 and 

we can see from the table of Figure that this is Norman Bates' record. 
 

 

"Communicating to the DBMS what you want it to do": 

Introduction to the SQL language. 
 

 
The Structured Query Language is a relational database language. By itself, SQL does not 

make a DBMS. It is just a medium which is used to as a means of communicating to the 

DBMS what you want it to do. SQL commands consist of english like statements which 

are used to query, insert, update and delete data. What we mean by ̀ English like', is that 

SQL commands resemble english language sentences in their construction and use. This 

does not mean that you can type in something like "Pull up the figures for last 



I TECH COMPUTER EDUCATION       SQL 

6 

 

 

 
 

quarter's sales" and expect SQL to understand your request. What it does mean is that 

SQL is a lot easier to learn and understand than most of the other computer languages. 
 

 
SQL is sometimes referred to as a non-procedural database language. What this means 

is that when you issue an SQL command to retrieve data from a database, you do not 

have to explicitly tell SQL where to look for the data. It is enough just to tell SQL what 

data you want to be retrieved. The DBMS will take care of locating the information in 

the database. This is very useful because it means that users do not need to have any 

knowledge of where the data is and how to get at it. Procedural languages such as 

COBOL or Pascal and even older databases based on the network and hierarchical 

data models require that users specify what data to retrieve and also how to get at it. 

Most large corporate databases are held on several different computers in different 

parts of the building or even at different geographic locations. In such situations, the 

non-procedural nature of SQL makes flexible, ad hoc querying and data retrieval 

possible. Users can construct and execute an SQL query, look at the data retrieved, 

and change the query if needed all in a spontaneous manner. To perform similar queries 

using a procedural language such as COBOL would mean that you would have to create, 

compile and run one computer programs for each query. 
 

 
Commercial database management systems allow SQL to be used in two distinct ways. 

First, SQL commands can be typed at the command line directly. The DBMS interprets 

and processes the SQL commands immediately, and any result rows that are retrieved 

are displayed. This method of SQL processing is called interactive SQL. The second 

method is called programmatic SQL. Here, SQL statements are embedded in a host 

language such as COBOL or C. SQL needs a host language because SQL is not really a 

complete computer programming language as such. It has no statements or constructs 

that allow a program to branch or loop. The host language provides the necessary 

looping and branching structures and the interface with the user, while SQL provides the 

statements to communicate with the DBMS. 
 
 

"A Research Project Conducted by IBM": 
The history of SQL. 

 

 
The origins of the SQL language date back to a research project conducted by IBM at 

their research laboratories in San Jose, California in the early 1970s. The aim of the 

project was to develop an experimental RDBMS which would eventually lead to a 



I TECH COMPUTER EDUCATION       SQL 

7 

 

 

 
 

marketable product. At that time, there was a lot of interest in the relational model for 

databases at the academic level, in conferences and seminars. IBM, which already had a 

large share of the commercial database market with hierarchical and network model 

DBMSs, realised quite quickly that the relational model would figure prominently in 

future database products. 
 

 
The project at IBM's San Jose labs was started in 1974 and was named System R. A 

language called Sequel (for Structured English QUEry Language) was chosen as the 

relational database language for System R. In the project, Sequel was abbreviated to 

SQL. This is the reason why SQL is still generally pronounced as see-quel. 
 

 
In the first phase of the System R project, researchers concentrated on developing a 

basic version of the RDBMS. The main aim at this stage was to verify that the theories of 

the relational model could be translated into a working, commercially viable product. 

This first phase was successfully completed by the end of 1975, and resulted in a 

rudimentary, single-user DBMS based on the relational model. 
 

 
The subsequent phases of System R concentrated on further developing the DBMS from 

the first phase. Additional features were added, multi-user capability was implemented, 

and by 1978, a completed RDBMS was ready for user evaluation. The System R project 

was finally completed in 1979. During this time, the SQL language was modified and 

added to as the needs of the System R DBMS dictated. 
 

 

The theoretical work of the System R project resulted in the development and release in 

1981 of IBM's first commercial relational database management system. The product 

was called SQL/DS and ran under the DOS/VSE operating system environment. Two 

years later, IBM announced a version of SQL/DS for the VM/CMS operating system. In 

1983, IBM released a second SQL based RDBMS called DB2, which ran under the MVS 

operating system. DB2 quickly gained widespread popularity and even today, versions of 

DB2 form the basis of many database systems found in large corporate data-centres. 
 

 
During the development of System R and SQL/DS, other companies were also at work 

creating their own relational database management systems. Some of them, Oracle 

being a prime example, even implemented SQL as the relational database language for 

their DBMSs concurrently with IBM. 



I TECH COMPUTER EDUCATION       SQL 

8 

 

 

 
 

Today, the SQL language has gained ANSI (American National Standards Institute) and 

ISO (International Standards Organization) certification. A version of SQL is available 

for almost any hardware platform from CRAY supercomputers to IBM PC 

microcomputers. In recent years, there has been a marked trend for software 

manufacturers to move away from proprietary database languages and settle on the 

SQL standard. The microcomputer platform especially has seen a proliferation of 

previously proprietary packages that have implemented SQL functionality. Even 

spreadsheet and word processing packages have added options which allow data to be 

sent to and retrieved from SQL based databases via a Local Area or a Wide Area network 

connection. 
 

 

"SQL Commands Build Upon Themselves": 
Organization of this book. 

 

 
After this introduction, this book first presents the SQL language in a nutshell. 

Subsequent chapters then focus on explaining each of the SQL command groups (the 

SELECT, the UPDATE, the CREATE etc) more fully. The reason for this method of 

presentation is that a lot of the SQL commands build upon themselves. For example, 

you cannot discuss the INSERT INTO with SELECT command without having knowledge 

of and understanding the SELECT statement itself. So where do you put the chapter on 

INSERT INTO with SELECT? You can't put it before the chapter on SELECT because as 

we've said, it requires the reader to have knowledge of the SELECT statement. You can't 

put it after the chapter on SELECT because the SELECT statement requires data to be 

input into the tables by using the INSERT statement. We have gone for the second 

option because it is a lot easier to take a leap of faith and believe that somehow the 

tables are already populated with data and use SELECT to query them rather than trying 

to understand the INSERT INTO with SELECT without any knowledge of how SELECT 

works. 
 

 

To save having to put phrases such as "see the later chapter on SELECT" or "see the 

earlier chapter on INSERT" throughout the book, we have started off by describing the 

SQL language globally, and then detailing each command group separately. It's a bit like 

a course for auto mechanics, say, you start off by first describing the layout of the car 

and all it's major parts such as the engine, the gearbox etc., before going on to discuss 

topics like the detailed construction of the engine. 
 

 
Primarily, this book is designed to teach you how to use SQL to create, modify, maintain 



I TECH COMPUTER EDUCATION       SQL 

9 

 

 

 
 

and use databases in practical situations. It is not intended to be an academic treatise 

on the subject, and so does not go into the mathematical basis of the topics considered. 

What it does contain is lots of examples and discussions on how they work. You should 

work your way through this book by reading through a section, and actually trying out 

each SQL query presented for yourself. If you do not have access to an SQL based 

database, then you can order a fully functional ANSI/ ISO SQL database at an affordable 

price, by sending off the order form at the back of this book. The quickest and easiest 

method of learning SQL (or indeed any computer language) is to use it in real life, 

practical situations. The chapters of this book are laid out so that each section builds 

upon the information and examples presented in the previous chapters. By following 

the SQL query examples, you will create a database, populate it and then use it to 

retrieve information. 
 

 
Remember that the SQL queries in this book are only given as examples. They represent 

one possible method of retrieving the results that you want. As you gain confidence in 

SQL, you may be able to construct a more elegant query to solve a problem than the 

one that we have used. This just goes to show the power and flexibility of SQL. 
 

 
The structure of this book is such that as you progress through it, you will be exposed to 

more and more complex aspects of SQL. If you follow through the book, you will find 

that you are not suddenly presented with anything particularly difficult. Rather, you will 

be gradually lead through and actively encouraged to try out SQL queries and variations 

of queries until you have thoroughly understood the underlying ideas. 
 

 
The chapters will not all take the same amount of time to read and understand. You will 

benefit most if you sit down, start at a new section, and work your way through until it 

is completed.  Although we understand that you may find some of the longer sections 

difficult to finish in one session. You should nonetheless endeavour to complete each 

section in as few sittings as possible. Taking short breaks to think over concepts learned 

as you progress through the section is also a good idea as it reinforces the learning 

process. You should try to understand the underlying concepts of what you are learning 

rather than coasting through the book. 
 

 

Notational conventions. 
The following notational conventions are used throughout this book: 



I TECH COMPUTER EDUCATION       SQL 

10 

 

 

 
 

BOLD TYPE These are keywords and data in a statement. They are to appear 

exactly as they are shown in bold. 

{  } Curly braces group together logically distinct sections of a 

command. If the braces are followed by an asterix (*), then the 

section inside them can occur zero or more times in a 

statement. If followed by a plus (+), then the section inside must 

appear at least once in the statement. 

[  ] Square brackets are used to signify sections of a statement that 

are optional. 

(  ) Parentheses in bold are part of the SQL command, and must 

appear as shown. Parentheses which are not in bold are to 

indicate the logical order of evaluation. 

... The ellipses show that the section immediately proceeding 

them may be repeated any number of times. 

|  The vertical bar means "or". 
 

 
Throughout this book, SQL command structure will be explained by using examples of 

actual statements. 



I TECH COMPUTER EDUCATION       SQL 

11 

 

 

 

 

A ROUGH GUIDE TO SQL 
 
 
This chapter presents an overview of the SQL language. The major commands are 

described from a functional point of view. Emphasis is given on briefly describing the 

SQL statements used in creating, populating, querying and modifying the database 

tables. It is left to the later chapters to give a detailed description of each command. 

This chapter gives you a feel for the SQL language and it's main command groups. 
 

 

"Consider the Simple Address Book": 
A Basic Relational Database. 

 

 
As we have already seen, the relational database model represents the database as a 

collection of tables which relate to each other. Tables consist of rows and columns. The 

column definitions describe the fields in the table, while the rows are the data records in 

the table. For example, consider the simple address book. If we wanted to computerize 

this, we could represent it as a relational database table. The table would consist of 

columns and rows. For a typical address book, the table column headings might be 

SURNAME, FIRSTNAME, TELEPHONE, ADDRESS, RATING, as in Figure, where RATING is a 

measure of how close a friend the person is! Notice how the column headings for a 

table appear exactly as they would in a written version of the address book. 
 

 
The sequence in which the columns are defined when the table is first created is 

important to SQL. This will be most evident when we come to adding data using the 

INSERT command. The column names in a table must all be different but you can use 

numbers to distinguish between similar columns. For example NAME1 and NAME2 are 

valid column names. In practice though, this would be a poor choice because they do 

not describe the contents of the columns in any way. A much better choice would have 

been something like FIRSTNAME and INITIALS. The columns are a method of giving 

the table a structure in which to add our data records. You can think of a database table 

as a blank sheet of paper. The overall objective is to use that sheet to store the names 

and addresses of people we know. 
 

 

SQL Tips 

IBM's DB2 restricts user names to 8 characters but allows 18 characters in table and 

column names. 



I TECH COMPUTER EDUCATION       SQL 

12 

 

 

 
 

The actual entries that you make into the table will form the rows (or records). So 

('Jones', 'Andrew', '(0523) 346639' '767 The Firs LE4 6TY' 15554) is a valid record in 

the 

 
SURNAME FIRSTNAME TELEPHONE ADDRESS RATING 

------- --------- --------- ------- ------ 

Jones Andrew (0523) 346639 267 The Firs LE4 6TY 15554 

Mason James (0553) 786139 1933 Tripsom Close 12224 

Malins Dick (0553) 867139 1966 Gt Glenn Rd 13444 

McGinn Mick (0525) 567139 145 Glossop St 15664 

Walsh Paul (0553) 656739 The Manor LE6 9PH 16778 

 
table of Figure Note how the data in the record row is organised in the same sequence 

as the column headings in the table. 
 

 
As we have defined it, the address book table is a pretty bad database. In order to 

understand what exactly is wrong with our table, we need to consider some "what if" 

situations. 
 

 
- What would happen if two or more people lived at the same address? We would need 

to have a separate entry for each friend, but with the same ADDRESS field contents. 
 

 
- What if some of the people have more than one phone number? We would need to 

have a separate row in our table for each phone number. 
 

 
These two "what ifs" show that the current address book definition will lead to 

disorganised rows and a lot of redundant data (in the more than one contact phone 

number example for instance, we would have two rows with exactly the same 

information except for the PHONE_NUMBER field). 
 

 
Fortunately, the relational database model lets us create multiple related tables to form 

a database. When analyzing a real life problem (such as the address book problem), a 

formal method of resolving the tables' columns and their relationships can be used. This 

method, known as Data Normalization, was first suggested by Codd in 1972. Although it 

is beyond the scope of this book to discuss Data Normalization fully, the contents of the 

next few paragraphs derive from this method. 



I TECH COMPUTER EDUCATION       SQL 

13 

 

 

 
 

Logically, we can split up the address book into three tables. The first table to hold 

details of who our friends are, the second to hold details of where they live, and the 

third table to hold details of phone numbers where they can be contacted. We don't 

really need a table for the ratings because a friend cannot have more than one rating at 

the same time. So we can add RATING to the NAMES table. If we wanted to keep a 

historical record of the ratings, then we would have to have a separate table for ratings 

as well. 
 

 
Figure shows how our address book can be split up to form a true relational database. 

Each table has a new field, FRNO. This field is the primary key in the NAMES table, and a 

foreign key in the other tables. It is what relates the tables to each other. A record 

which refers to a particular friend will have the same FRNO in all the tables. Thus, for 

our friend who has two houses, there will be an entry in tables one and three and two 

entries in table two. 

 
FRNO SURNAME FIRSTNAME RATING 

---- ------- --------- ------ 

1 Jones Andrew 15554 

2 Mason James 12224 

3 Malins Dick 13444 

4 McGinn Mick 15664 

5 Walsh Paul 16778 

The NAMES Table 
 

 
FRNO ADDRESS 

---- ------- 

1 267 The Firs LE4 6TY 

2 1933 Tripsom Close 

3 1966 Gt Glenn Rd 

4 145 Glossop St 

5 he Manor LE6 9PH 

The ADDRESS Table 
 

 
FRNO TELEPHONE 

---- --------- 

1 (0523) 346639 

2 (0553) 786139 



I TECH COMPUTER EDUCATION       SQL 

14 

 

 

 
 

3 (0553) 867139 

4 (0525) 567139 

5 (0553) 656739 

The TELEPHONE_NUMBER Table 
 

 
In this simple example, the splitting up of the database into three tables is not very 

practical. For a personal address book, we would have been better off with the flat file 

(single table) database The point to note though is that the three table version of the 

database is more flexible (we can store the details of a friend even if he has 25 

telephones and 14 houses, without having to store redundant data). For large and 

complex databases which may consist of dozens of tables and tens of thousands of 

records, this logical splitting up of data into separate tables (known as Data 

Normalization) is vital in preventing data redundancy and creating a relationally correct 

database. 
 

 

"SQL Commands Fall into Different Categories": 

Subdivisions of SQL. 
 

 

The SQL language as defined by ANSI is subdivided into a number of different sections. 

This means that the SQL commands fall into different categories depending on what 

function they perform. 
 

 
The Data Definition Language or DDL, (called Schema Definition Language by ANSI) 

consists of those commands in SQL that directly create database objects such as tables, 

indexes views. A lot of SQL commands also create temporary database objects during 

processing. The SELECT command for example, creates a temporary table to hold the 

results of a query. Such commands are not part of the DDL. 
 

 

The Data Manipulation Language or DML consists of those commands which operate on 

the data in the database. This includes statements which add data to the tables as well 

as those statements which are used to query the database. 
 

 
A third, unofficial, subdivision of SQL commands is Data Control Language or DCL. It is 

generally used to refer to those SQL commands are used for data security. These are 

commands that are used to determine whether a user is allowed to carry out a 

particular operation or not. The ANSI standard groups these commands as being part of 

the DDL. 



I TECH COMPUTER EDUCATION       SQL 

15 

 

 

 
 

"Enter SQL Statements at the Command Line": 

Using Interpretive SQL. 
 

 
All SQL statements in this book have been run using the Data-Lab SQL RDBMS and 

interpreter. The interpreter is the interface that you use to communicate with the 

DBMS. It allows you to type, compose and edit your SQL queries and has special editing 

commands to help you with this. When you are satisfied with the wording of the query, 

you can enter a semicolon character which instructs the interpreter to pass the query on 

to the SQL engine for processing. 
 

 
If you are using a different SQL interpreter, you will in most cases, not need to modify 

the SQL statements because they follow the ANSI standard quite closely. Where 

extensions to the ANSI standard are discussed, you will need to consult the reference 

manual for your product to find out the exact form of the statement. Note that since 

Data-Lab SQL is quite close to Oracle SQL, Oracle users should have no problems. 
 

 

"Use the CREATE TABLE statement": 
Creating Database Tables. 

 

 
The SQL command to create tables is the CREATE TABLE statement. 

We will use this to create a simple car dealership database which will be used 

throughout the rest of this chapter. This simple database consists of the three tables 

shown in Figure. The CARS table holds details of the car's model name, the body style 

and the year of manufacturer. The MD_NUM field is used as the primary key. The SPECS 

table stores the information on additional equipment on each of the cars. The STOCK 

table holds details of the number of cars of each model that are currently in stock, and 

their retail price. 

 
CARS SPECS STOCK 

---- ----- ----- 

MD_NUM MD_NUM MD_NUM 

MD_NAME MPG QTY 

STYLE RADIO PRICE 

YEAR ENGINE  

Tables used in the used car dealership database 



I TECH COMPUTER EDUCATION       SQL 

16 

 

 

 
 

To create the first table in the car dealership database: 

CREATE TABLE CARS ( 

MD_NUM INTEGER, 

MD_NAME CHAR(10), 

STYLE CHAR(6), 

YEAR  INTEGER ); 

Table CARS created. 
 

 
This statement creates a database table on disk, and assign it the name CARS. The table's 

columns are also defined along with their data types. When you create tables, each of 

the columns must be defined as a specific data type. For example, the MD_NUM column 

is defined as an INTEGER, and MD_NAME is defined as CHAR(10). This means that when 

data is added to the table, the MD_NUM column will only hold integers and the 

MD_NAME column will hold character string values up to a maximum of 10 characters. 

The subject of data types and valid and invalid values will be discussed in detail in the 

next chapter. 
 

 
Now that we have seen how to use the CREATE TABLE statement, we can create the 

next two tables in our car dealership database by typing: 
 

 
CREATE TABLE SPECS ( 

MD_NUM INTEGER, 

MPG  INTEGER, 

RADIO CHAR(3), 

ENGINE CHAR(7) ); 

Table SPECS successfully created. 
 

 
CREATE TABLE STOCK ( 

MD_NUM INTEGER, 

QTY INTEGER, 

PRICE  INTEGER ); 

Table STOCK successfully created. 
 

When created, the tables are empty. In order to be of any use they need data. The next 

section describes the INSERT statement which is used to add data to the tables. 

 
SQL Tips: Oracle allows you to use up to 30 characters for both table and column 

names 



I TECH COMPUTER EDUCATION       SQL 

17 

 

 

 
 

"Use the INSERT INTO Statement": 

Adding Data to Tables. 
 

 

Data is added to tables by using the INSERT statement. The values that we need to add 

to the car dealership database are shown in Figure. 

 
MD_NUM MD_NAME STYLE YEAR 

------ ------- ------ ------- ----- ---- 

1 HONDA COUPE 1983 

2 TOYOTA SALOON 1990 

3 BUICK ESTATE 1991 

4 NISSAN VAN 1992 

5 FORD SALOON 1993 

The Cars Table    

 
MD_NUM MPG RADIO ENGINE 

------ --- ----- ------  

1   43 YES 2L-4CYL 

2   25 NO 4L-V8 

3   18 YES 5L-V8 

4   50 NO 2L-4CYL 

5   45 YES 3L-V6 

The Specs Table 
 

 
MD_NUM QTY PRICE 

--------- ----- ----- 

1 10 4980 

2 3 13865 

3 5 14900 

4 1 11000 

5 2 24600 

The Stock Table 

Starting with the first table, the CARS table, the first record or row is added by: 

INSERT INTO CARS (MD_NUM, MD_NAME, STYLE, YEAR) 

VALUES (1, 'HONDA', 'COUPE', 1983); 



I TECH COMPUTER EDUCATION       SQL 

18 

 

 

 
 

1 row successfully inserted. 
 

 
The rest of the rows can be added to CARS by using exactly the same statement format, 

but changing data values each time. 
 

 
INSERT INTO CARS (MD_NUM, MD_NAME, STYLE, YEAR) 

VALUES (2, 'TOYOTA', 'SALOON', 1990); 
 

 
INSERT INTO CARS (MD_NUM, MD_NAME, STYLE, YEAR) 

VALUES (3, 'BUICK', 'ESTATE', 1991); 
 

 
INSERT INTO CARS (MD_NUM, MD_NAME, STYLE, YEAR) 

VALUES (4, 'NISSAN', 'VAN', 1992); 
 

 
INSERT INTO CARS (MD_NUM, MD_NAME, STYLE, YEAR) 

VALUES (5, 'FORD', 'SALOON', 1993); 
 

 
4 rows successfully inserted. 

 

 
In the form of the INSERT statement that we have used above, you must specify three 

pieces of information. First, the name of the table to insert data into. Second, the names 

of the columns where data is to be added. Finally, you need to specify the actual data 

values. 
 

 
We can add data to the SPECS table by: 

INSERT INTO SPECS VALUES  (1, 43, 'YES', '2L-4CYL'); 

INSERT INTO SPECS VALUES  (2, 25, 'NO', '4L-V8'); 

INSERT INTO SPECS VALUES  (3, 18, 'YES', '5L-V8'); 

INSERT INTO SPECS VALUES  (4, 50, 'NO', '2L-4CYL'); 

INSERT INTO SPECS VALUES  (5, 45, 'YES', '3L-V6'); 
 

 
5 rows successfully inserted. 

 

 
and to the STOCK table by: 

INSERT INTO STOCK VALUES  (1, 10, 4980); 

INSERT INTO STOCK VALUES  (2, 3, 13865); 

INSERT INTO STOCK VALUES  (3, 5, 14900); 



I TECH COMPUTER EDUCATION       SQL 

19 

 

 

 
 

INSERT INTO STOCK VALUES  (4, 1, 11000); 

INSERT INTO STOCK VALUES  (5, 2, 24600); 

5 rows successfully inserted. 

The INSERT statements for the SPECS and the STOCK table did not use a value list. This is 

a shortcut which SQL allows you to use when you specify values for all the columns in 

each row, as we have been doing. 
 

 

"Use the SELECT Statement": 

Extracting data from tables. 
 

 
The most important job of any database is to provide you with information. In SQL, the 

act of retrieving information is called querying the database. Information is retrieved 

from the database by using the SELECT statement. 
 

 
The previous two sections, first created the car dealership database, them added data 

to it. To retrieve the data from the CARS table of this database for example, you could 

use a SELECT statement. A SELECT statement is also called a query because it 

interrogates the database: 

 
SELECT MD_NAME,  STYLE, YEAR 

FROM CARS; 

 
MD_NAME STYLE YEAR 

---------- ------- -------- 

HONDA COUPE 1983 

TOYOTA SALOON 1990 

BUICK ESTATE 1991 

NISSAN VAN 1992 

FORD SALOON 1993 

 
The data retrieval requirements vary from user to user. For example, in our car 

dealership database, one user might want to know how many Nissan cars there are in 

stock while another might need to know how many cars there are which have a radio, 

eight cylinders and cost less than 10,000. As long as the information that you require is 

stored in the database in some form, you will be able to construct a form of SELECT 



I TECH COMPUTER EDUCATION       SQL 

20 

 

 

 
 

statement which retrieves it. It because of this flexibility that the SELECT statement is 

the most complex and also the most useful of all the SQL commands. 
 

 

"Use the UPDATE and DELETE Statements": 

Modifying data. 
 

 
In daily use, a database is a constantly changing store of data. The SQL commands which 

are used to modify data that is already in the database are the UPDATE and the DELETE 

commands. For example, to change the record of the Ford model in the CARS table to 

show the year of manufacture as 1989 and not 1993: 
 

 
UPDATE CARS 

SET YEAR = 1989 

WHERE MD_NAME = 'FORD'; 

1 row updated. 
 

 
We can express what this query is doing in words as "Update the CARS table and set the 

YEAR column value to 1989 for all those records where the MD_NAME column value is 

FORD." An important point to note is that UPDATE is capable of modifying the values of 

more than one record in a table. So if the CARS table had several Fords, then this 

statement would have changed the date of manufacture on all of them to 1989. You 

need to be wary of this when modifying values with UPDATE. The trick is to be so 

specific in the WHERE clause that only those records that you want to be changed are 

changed. 
 

 
Another reason for wanting to modify the database is when deleting unwanted records 

from the tables SQL uses the DELETE command for this. 
 

 
For example, if we decide that the Ford model in the CARS table is not available for 

sale, we can simply delete it's record from the table by: 
 

 
DELETE FROM CARS 

WHERE MD_NAME = 'FORD' AND YEAR = 1989; 

1 row deleted. 



I TECH COMPUTER EDUCATION       SQL 

21 

 

 

 
 

Just as with the UPDATE statement, care must be taken when using DELETE to ensure 

that only those records that you want deleted are actually deleted. The WHERE clause in 

this statement is a little more specific than the one we used in the last UPDATE 

statement. It asks SQL to delete only those records where the MD_NAME is Ford and 

also the YEAR is 1989. To confirm that the DELETE statement did remove the record for 

the Ford, we can query the CARS table: 

 
SELECT * 

FROM CARS; 

 

 

MD_NUM 

-------------- 

1 

 

MD_NAME 

------- -------- 

HONDA 

 

STYLE 

------- 

COUPE 

 

YEAR 

-------- 

1983 

2 TOYOTA SALOON 1990 

3 BUICK ESTATE 1991 

4 NISSAN VAN 1992 

 

2.8 "Another Kind of Table, Called a Virtual Table": 

Views. 
 

 
The tables that you have been using up to now are called base tables. There is another 

kind of table, called a virtual table or view that is allowed for in SQL. Base tables are 

database objects whose structure and the data they contain are both stored on disk. 

Views are tables whose contents are derived from base tables. Only their structure is 

stored on disk. 
 

 
SQL's DML statements operate on views just as they do on base tables, but with one 

exception: when data is apparently added to, deleted or modified from a view, the 

actual data that is operated on is that in the underlying base tables that make up the 

view. 
 

 
You can think of a view as a stencil or a window into a table or tables. Suppose that in a 

company personnel database, a staff table contains relevant work related information 

on employees such as department, supervisor, date joined etc. The table might also 

contain sensitive information such as salary, home address and telephone number etc. 

An excellent method of limiting casual user access to only the relevant work related 

information, and restrict access to the sensitive information would be to use a view. 



I TECH COMPUTER EDUCATION       SQL 

22 

 

 

 
 

In the used car dealership database for example, if the manager decides that he does 

not want everyone to see the price of the cars in the STOCK table, he could create a 

view called NO_PRICE: 
 

 
CREATE VIEW NO_PRICE 

AS SELECT MD_NUM, QTY FROM STOCK; 

View NO_PRICE successfully created. 

Notice that the CREATE VIEW statement contains a SELECT statement as well. A view is 

in fact just a stored query that gets executed whenever the view is used as the subject 

of a command. The results of the query define the records ̀ held' in the view ie. the data 

in the view. 
 

 
Once created, the view's definition is stored by the DBMS and can be queried just like a 

regular base table. For example, to list all the "rows" in NO_PRICE: 
 

 
SELECT * 

FROM NO_PRICE ; 
 

 
MD_NUM QTY 

-------- -------- 

1 10 

2 3 

3 5 

4 1 

5 2 
 

 
Notice that the view only displays two columns from the STOCK table. PRICE has been 

hidden from the user. 
 

 

"Prevent Access to Sensitive Information": 

Database security. 
 

As we have already seen, views can be used to prevent access to sensitive information 

in the database. Another method of enforcing security is by use of the GRANT and the 

REVOKE statements. 



I TECH COMPUTER EDUCATION       SQL 

23 

 

 

 
 

SQL operates on the concepts of user identif ication, ownership of database objects, and 

that of granting and revoking privileges from users. When a table is first created, it is 

owned by the user who created it. This means that the user who created the table is 

automatically given full privileges to operate on that table (INSERT data, UPDATE 

values, DELETE rows etc). All other users are given no privileges on the table. 
 

 
Let's see how this works. We will first create a view called NEW_CARS (which consists of 

cars whose year of manufacture is after 1990). We'll create this view under the user ID 

of JOE. Don't worry too much if the format of the CREATE VIEW appears a litt le strange. 

What it is doing is to temporarily set the user ID to JOE, then create the view, then 

revert back to the original user ID: 
 

 
CREATE SCHEMA AUTHORIZATION JOE 

CREATE VIEW NEW_CARS 

AS SELECT *  FROM CARS WHERE YEAR > 1990 ; 

View NEW_CARS successfully created. 

Now if we try to look at the data in the view: 

SELECT * 

FROM NEW_CARS; 
 

 
Error 98: User does not have the necessary SELECT privileges. 

 

 
SQL tells us that we do not have the necessary privileges for this operation. We can 

confirm that the owner of the view, JOE, is allowed to look at the information by 

prefixing the JOE user-id to the viewname: 
 

 
SELECT * 

FROM JOE.NEW_CARS ; 

MD_NUM MD_NAME STYLE YEAR 

--------- ----------- ------- -------- 

3 BUICK ESTATE 1991 

4 NISSAN VAN 1992 

 
This query tells SQL that we know the user ID of the person who created the table is 

JOE, and we want it to use this for retrieving data from NEW_CARS. 



I TECH COMPUTER EDUCATION       SQL 

24 

 

 

 

 

CREATING AND MAINTAINING TABLES 
 
 
Before you can do anything in SQL, someone must first create a database structure 

composed of related tables, and then add data to those tables. The CREATE TABLE 

command is used to create new tables and is a part of SQL's DDL. This chapter starts by 

considering the DDL as defined by the ANSI/ ISO standard. The later sections of this 

chapter describe how to create, alter and delete SQL tables. All the commands 

described in this section are concerned with operations on the tables themselves and 

do not directly affect the data stored in them. 
 

 
Indexes are a method of speeding up the querying of tables, and these are also 

introduced in this chapter. 
 

 

"The ANSI Standard Makes Such a Distinction...": 

The DDL and the ANSI/ISO standard. 
 

 
The ANSI/ ISO standard defines the SQL language as being composed of the Data 

Manipulation Language (DML) and the Data Definition Language (DDL). The DDL can be 

broadly considered as those SQL commands that operate on the structure of the 

database, ie. the database objects such as tables, indexes and views. The DML on the 

other hand, can be thought of as those statements that operate on the data stored in 

the database tables themselves. 
 

 

The ANSI/ ISO standard makes such a distinction between these two aspects of SQL, 

that it considers them as two separate sub-languages. Indeed, once the database 

structure has been created, the ANSI/ ISO standard does not even require the RDBMS 

to accept any DDL statements. This means that the ANSI/ ISO standard divides the 

database development and creation activities from the database utilization activities. 
 

 
This is not the case in commercial SQL based RDBMSs where almost all allow the 

database development activities and the database utilization activities to be carried out 

jointly, with no separation between the DDL statements and the DML statements. This 

allows a minimal database to be created, populated with data and used while at the 

same time, the structure of the database is broadened. 



I TECH COMPUTER EDUCATION       SQL 

25 

 

 

 
 

It is obvious that the ANSI/ ISO method of separating the development activity from the 

utilization activity will lead to complications when it comes to altering the structure of 

the database, for instance, when it comes to removing a table. In fact, the ANSI/ ISO 

standard does not even define the DROP TABLE statement to delete a table from the 

database or the ALTER TABLE statement to change the structure of a table. One of the 

few advantages of the ANSI/ISO method is that it forces you to adopt a rigorous systems 

analysis strategy before committing the final database design. Subsequent changes to 

the database structure will mean system down time so you have to think hard to design 

the right system before you start using it. 
 
 

"Single and Multiple Database Architectures": 

The structure of SQL databases. 
 

 
The ANSI/ ISO SQL standard specifies that the database schema consist of a single large 

database with tables which are owned by various users. The ownership of the tables 

sub-classifies them into different virtual database groups. This is shown in Figure. The 

tables owned by FRANK_G might be the Accounts (sub)database and those owned by 

MARK_B, the Suppliers (sub)database. Under the ANSI/ISO standard, both the Accounts 

tables and the Suppliers tables are part of the overall system database. All the tables in 

such single-database architectures can easily reference each other. The single-database 

architecture is used in both the Oracle and IBM's DB2 systems. 

---------------------------------------------------------------------------------------- 

|  |  

|         |  

|  | TABLE 1 TABLE 2   |  | TABLE 3 |  |  TABLE 4 TABLE 5 |   |  

|  |  |  |  |  |  |  |  

|  | TABLE 7 TABLE 9   |  | TABLE 67  |  |  TABLE 56  TABLE 45 |   |  

|  |  |  |  |  |  |  |  

|  | TABLE 56 TABLE 19 |  | TABLE 82  |  |  TABLE 92  TABLE 23 |   |  

|  |    |  |   |  | _  |  |  

|  Owned by FRANK_G Owned by Owned by MARK_B |  

|  SALLY_R |  

------------------------------------------------------------------------------------------ 

System Database 

ANSI/ ISO structure consists of one large system database, which all tables are a part of. 

Tables are owned by users. 



I TECH COMPUTER EDUCATION       SQL 

26 

 

 

 
 

One of the disadvantages of the single-database architecture is that over time, as more 

and more tables are added to the system, the database becomes very big and bulky. 

Performing database administration tasks such as back-ups, performance analyzing 

etc. on such large databases becomes a complex process, requiring the services of a 

dedicated database administrator. A database architecture which does not suffer from 

this disadvantage is the multiple-database architecture. Here, tables are organized into 
 

 
several distinct databases. This is shown in Figure. Although the data is split into 

several smaller, more manageable databases, the multiple-database architecture does 

suffer from a serious disadvantage. The tables in one database cannot (easily) contain 

foreign key references to keys in another database's table. The multiple-database 

architecture is used in Sybase, SQL Server and Ingres systems. 
 

 

The ACCOUNTS database 
 

 

| TABLE 1 TABLE 2 |  

|  |  

| TABLE 7 TABLE 9 |  

|  |  

| TABLE 56 TABLE 19  | 

|   _| 

Owned by FRANK_G 
 

 

The CUSTOMERS database 
 

 

| TABLE 3 |  

|  |  

| TABLE 67 |  

|  |  

| TABLE 82 |  

|   | 

Owned by SALLY_R 



I TECH COMPUTER EDUCATION       SQL 

27 

 

 

 
 

The SUPPLIERS database 
 

 

| TABLE 4 TABLE 5  |  

|  |  

| TABLE 56 TABLE 45|  

|  |  

| TABLE 92 TABLE 23|  

|   _| 

Owned by MARK_B 
 

 

"Creating a database table": 

The CREATE TABLE command. 
 

 
Creating database tables is done through the CREATE TABLE command. The CREATE 

TABLE command is one of three SQL statements that are part of the DDL and are used to 

manipulate the structure of tables that constitute a database. The other two are ALTER 

TABLE and DROP TABLE. We'll meet these later in this chapter. 
 

 
The syntax of the CREATE TABLE statement is shown in Figure. The CREATE TABLE 

command creates an empty table-one with no records. The parameters that you must 

supply are name of the table, a list of the columns in the table and a description of the 

columns (data type, size etc). A valid table must have at least one column but there is 

usually no upper limit specified. 
 

 
CREATE TABLE table [ READ_ONLY ] 

( element { , element } ) ; 
 

 
table 

The table name. This can be up to 24 characters. 
 

 
element 

column definition | unique constraint definition 
 

 
column definition 

col_name col_type [ NOT NULL ] [ UNIQUE | INDEX ] 



I TECH COMPUTER EDUCATION       SQL 

28 

 

 

 
 

col_name 

The name of the column can be up to 24 characters. 
 

 
col_type 

ANSI/ ISO columns can be of the following type: 

CHAR [ ( length) ] I 

VCHAR [ ( length) ] I 

NUMERIC [ ( precision [ , scale ]) ]            I 

DECIMAL [(precision [ , scale ]) ]               I 

INTEGER  |  

SMALLINT  |  

FLOAT [(precision )] | 

DOUBLE PRECISION   | 

DATE 

unique constraint definition 

UNIQUE ( col_name {, col_name }* ) 
 

 
ANSI/ ISO SQL also allows you to create READ ONLY tables. This means that once 

created, SQL commands cannot be used to insert or update or delete data any in the 

tables. Creating READ ONLY tables only makes sense if some non-SQL process (an 

application program for example) is going to add the data. 
 

 
The data types allowed in the column definitions vary considerably from product to 

product. Most commercial SQL systems support the ANSI data types as a minimum, 

and add additional types that are proprietary. The valid ANSI/ ISO data types are given 

in Appendix A. 
 

 

SQL Tips 

IBM's DB2 lets you store oriental language characters such as Kanji in fixed and 

variable length strings of 16-bit characters. 
 

 
The UNIQUE and the INDEX column modifiers both create indexes for the field to which 

they are applied. Indexes will be discussed in detail in the next section. The NOT NULL 

column modifier adds the condition that a record cannot be inserted into the table if no 

value is supplied for this particular field. 
 

 
In SQL, tables are owned by the user who created them. Initially, only the table's owner 



I TECH COMPUTER EDUCATION       SQL 

29 

 

 

 
 

is allowed to perform any operations involving that table. Other users must refer to the 

table by preceding the table name with the owner's user's ID. A table which is meant for 

use by all users can be created under a special user identifier known as PUBLIC. Tables 

created under PUBLIC allow all users on the system to access them. We came across the 

concept of ownership and privileges briefly in chapter 2. The subject of table ownership 

is discussed more fully in the chapter on database security. 
 

 
The names of tables which are owned by any given user must all be different. Some 

systems extend this so that the names of all the tables in the whole system must be 

different from each other. This also applies to column names within a table, but 

separate tables can however, have repeating column names. 
 

 
We will be using a database based on a university administration system throughout 

this book. The database consists of five tables: STUDENTS, LECTURERS, SUBJECTS, 

EXAMS and DEPARTMENTS. The whole database will be created and used in stages as 

we progress through the chapters. The structure of the tables as well as the data in 

them is shown in Figure. Appendix B gives an in depth description of this sample 

database. 

SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

------- ---------- ----- ---------- ------- ---- 

Duke Fitzroy 11-26-1970 1 4 2 

Al-Essawy Zaid M A 11-26-1970 2 4 2 

Ayton Phil J M A 07-13-1967 3 3 1 

Patel Mahesh 12-07-1970 4 2 1 

Jones Gareth P Y 01-24-1970 5 2 1 

Scott  Gavin T J 02-20-1971 6 2 2 

Baker Abu-Mia 03-13-1971 7 4 1 

Brown Joseph P A 04-19-1970 8 3 3 

Monkhouse Robert Jones 05-23-1967 9 1 1 

Grimm Hans Johan 06-21-1971 10 2 1 

Gyver Sue L J V 07-30-1968 11 4 2 

Hung-Sun Jimmy Lau 08-11-1969 12 1 3 

Middleton Jane P 09-14-1971 13 1 3 

Mulla Farook F U 10-24-1968 14 3 2 

Layton Hugh 11-16-1971 15 5 1 

Wickes Wendy Y Y W 12-05-1969 16 1 1 

THE STUDENTS TABLE 



I TECH COMPUTER EDUCATION       SQL 

30 

 

 

 
 

SURNAME INITL LECT_NO DEPT_NO SUB_N GRADE PAY JOINED 

------- ----- ------- ------- ----- ----- --- ------ ------ 

Jones R A 1 1 2 E 24000 03-25-1990 

Scrivens T R 2 3 1 D 31800 09-30-1986 

Nizamuddin W M 3 3 4 A 86790 05-26-1969 

Campbell J G 4 5 3 C 43570 02-23-1980 

Ramanujan S 5 4 5 C 40900 01-01-1985 

Finley G Y 6 4 5 D 34210 03-28-1960 

THE LECTURERS TABLE 

 
SUB_NO SUB_NAME DEPT_NO CREDITS PASS 

------ -------- ------- ------- ---- 

1 Mathematics 1 2 65 

2 English Lit 2 1 60 

3 Engineering Drwg 1 1 71 

4 Basic Accounts 3 1 67 

5 Industrial Law 4 2 52 

6 Organic Chemistry 5 3 57 

7 Physiology 6 3 78 

8 Anatomy 6 1 74 

9 Electronics 1 3 71 

10 Marketing 3 2 56 

THE SUBJECTS TABLE 

 
SUB_NO STUDENT_NO MARK DATE_TAKEN 

------ ---------- ------- ----------------- 

1 1 76 05-23-1984 

9 1 42 05-20-1984 

3 1 67 05-15-1984 

2 2 52 06-05-1984 

2 3 89 06-08-1984 

2 3 51 05-11-1984 

4 4 34 05-11-1984 

10 4 49 06-26-1984 

5 5 62 05-03-1984 

5 6 70 05-17-1984 

5 7 36 05-23-1984 



I TECH COMPUTER EDUCATION       SQL 

31 

 

 

 
 

5 8 52 05-20-1984 

6 9 67 05-15-1984 

6 10 82 06-05-1984 

6 11 73 06-08-1984 

7 12 27 05-11-1984 

8 12 56 05-11-1984 

8 13 67 06-26-1984 

7 13 63 05-03-1984 

THE EXAMS TABLE 

 
DEPT_NO DEPT_NAME HEAD BUDGET P_BUDGET 

---------------- ------------- ------ ------ -------- 

1 Engineering 59 5780000 6200000 

2 Arts & Humanities 23 753000 643000 

3 Management Studies 3 2510000 1220000 

4 Industrial Law 12 78000 210000 

5 Physical Sciences 18 4680000 4250000 

6 Medicine 67 6895000 6932000 

THE DEPARTMENTS TABLE 

 
Let's begin by creating the first table in our university admin. system, the STUDENTS 

table: 
 

 
CREATE SCHEMA AUTHORIZATION PUBLIC 

CREATE TABLE STUDENTS ( 

SURNAME CHAR(15) NOT NULL, 

FIRST_NAME  CHAR(15), 

D_O_B DATE, 

STUDENT_NO  INTEGER NOT NULL UNIQUE, 

DEPT_NO INTEGER, 

YEAR DECIMAL(2) ); 
 

 
Table STUDENTS successfully created. 

 

 
This query instructs the system to create a new table called STUDENTS with six fields. 

When the table is first created, it contains no data rows. We have used CREATE TABLE in 

conjunction with the CREATE SCHEMA statement because the ANSI/ ISO standard 



I TECH COMPUTER EDUCATION       SQL 

32 

 

 

 
 

specifies that the CREATE SCHEMA statement forms the basis of the CREATE TABLE 

statement as well as the CREATE VIEW and the GRANT statements. 
 

 
The CREATE SCHEMA statement tells SQL who the owner of the newly created table 

is to be and this can be different from the current user-id. Strictly speaking, ANSI SQL 

does not allow the CREATE TABLE statement to be used without the CREATE SCHEMA 

clause but almost all popular versions of SQL allow CREATE TABLE statements to be used 

without the preceding CREATE SCHEMA clause. In this case, the current authorization 

identifier will be assigned as the owner of the table. 
 

 
The order in which the columns are defined is important. The column order is the 

default order in which the results are displayed whenever you query the table. In the 

STUDENTS table, SURNAME, FIRST_NAME, D_O_B, ... are all column names. Columns in 

the same table must each have unique column names but columns in different tables 

can have the same name. 
 

 
The CREATE TABLE statement must define the data type for each column, immediately 

after the column name. Data types define the type of the data that can be stored in the 

column. For example, if a column is defined as being DECIMAL data type, than it will 

only hold decimal values. Trying to store text strings in the column will cause an error. 
 

 
Appendix A describes the ANSI/ ISO standard data types, but these are not the only types 

that are available in commercial SQL systems. Almost all the popular SQL RDBMSs 

support the ANSI/ ISO data types as a minimum set but add to it substantially. Some of 

the more common additional data types include money, date and boolean (to store 

true/ false values). 
 

 

SQL Tips 

DB2 supports three different date and time data types: DATE, TIME and TIMESTAMP 

which is used to specify an instant in time. 
 

 

Now let's construct the other tables that form the sample database. The LECTURERS 

table holds details of the teaching staff at the university. To create the LECTURERS 

table: 



I TECH COMPUTER EDUCATION       SQL 

33 

 

 

 
 

CREATE TABLE LECTURERS ( 

SURNAME CHAR(15) NOT NULL, 

INITL CHAR(4), 

LECT_NO  INTEGER NOT NULL, 

DEPT_NO INTEGER, 

SUB_NO INTEGER, 

GRADE  CHAR(1), 

PAY DECIMAL(6), 

JOINED DATE, 

UNIQUE (SURNAME, LECT_NO) ); 
 

 
Table LECTURERS successfully created. 

 

 
Notice that this time, the unique constraint definition is at the end of the CREATE TABLE 

statement. ANSI/ ISO SQL allows you to specify a group of columns as being UNIQUE in 

this way. This differs from using the UNIQUE keyword as a column modifier in that SQL 

considers the combination of fields (SURNAME and LECT_NO in this case) to be unique. 
 

 

SQL Tips 

OS/2 Extended Edition does not support date arithmetic. 
 

 
The SUBJECTS table holds the details of the subjects taught at the university. To create 

the SUBJECTS table: 
 

 
CREATE TABLE SUBJECTS  ( 

SUB_NO INTEGER  NOT NULL UNIQUE, 

SUB_NAME  CHAR(20), 

DEPT_NO INTEGER, 

CREDITS NUMERIC(2), 

PASS NUMERIC(2) ); 

Table SUBJECTS successfully created. 
 

 
The EXAMS table holds the details of the exams taken by the students and the results 

they achieved. To create the exams table: 



I TECH COMPUTER EDUCATION       SQL 

34 

 

 

 
 

CREATE TABLE EXAMS ( 

SUB_NO INTEGER NOT NULL, 

STUDENT_NO INTEGER NOT NULL, 

MARK DECIMAL(3), 

DATE_TAKEN  DATE ); 

Table EXAMS successfully created. 
 

 
The DEPARTMENTS table holds the details of all the university departments. To create 

the departments table: 
 

 

CREATE TABLE DEPARTMENTS   ( 

DEPT_NO INTEGER NOT NULL, 

DEPT_NAME  CHAR(20), 

HEAD INTEGER, 

BUDGET  DECIMAL(10), 

P_BUDGET DECIMAL(10), 

UNIQUE (DEPT_NO) ); 

Table DEPARTMENTS successfully created. 
 

 

SQL Tips 

Oracle's DATE type stores both date and time down to a second accuracy. In this 

respect, it is similar to DB2's TIMESTAMP type. 
 

 

"Apply Restrictions to Groups of Columns": 

Column and table modifiers. 
 

 
The CREATE TABLE command allows you to specify column modifiers, such as NOT NULL 

for the DEPT_NO column in DEPARTMENTS and UNIQUE for the STUDENT_NO column in 

STUDENTS. These modifiers tell SQL to control the data that can be input into the 

column. The CREATE TABLE command also lets you specify table modifiers which apply 

restrictions to groups of columns such as the UNIQUE table modifier in the LECTURERS 

table definition which applies the UNIQUE constraint to both the SURNAME and the 

LECT_NO fields jointly. 



I TECH COMPUTER EDUCATION       SQL 

35 

 

 

 
 

The NOT NULL modifier. 
The NOT NULL modifier prevents NULL (a token that designates a column as being 

empty) values from appearing in the column. This means that a row cannot be added to 

the table if values for the NOT NULL columns is not supplied. NOT NULL is usually used 

for primary keys, for which there must be a value for all rows in the table. 
 

 

The UNIQUE modifier. 
The UNIQUE modifier is used in the STUDENTS table on the SURNAME and the 

STUDENT_NO fields. UNIQUE ensures that the values entered into the column are all 

different from each other. Rows cannot be added to the table if the value for a UNIQUE 

column is already in the table. It only makes sense to apply UNIQUE to columns that are 

also declared NOT NULL. If this is not done, then only one row will be allowed to have a 

NULL value for that column because the UNIQUE constraint will prevent other NULLs 

from being entered. Subsequent rows will thus have the NOT NULL constraint applied by 

default. 
 

 

SQL Tips 

Most commercial SQL systems use the non-standard CREATE INDEX statement to specify 

a column as being unique. 
 

 

The INDEX modifier. 
The INDEX modifier is not part of the ANSI/ ISO standard but is quite common in 

commercial SQL systems. INDEX causes an index to be created based on the values in 

the column, which greatly speeds up query processing. Almost all commercial SQL 

systems also create an index for columns that are defined as UNIQUE. Index 

maintenance is taken care of by the DBMS, and so the user is not always aware of when 

indexes are being created. 
 

 

The PRIMARY KEY modifier. 
The PRIMARY KEY modifier is a relatively new feature in SQL which is not available in all 

systems. It modifier enables us to tell SQL which columns in our tables are the primary 

keys. Up to now, we have been dealing with primary keys as logical concepts only. This 

modifier enables us to extend this so that we can formally define primary keys. For 

example, in the SUBJECTS table, we said that the SUB_NO column is the primary key. To 

formally define this, the CREATE TABLE statement would be: 



I TECH COMPUTER EDUCATION       SQL 

36 

 

 

 
 

CREATE TABLE SUBJECTS  ( 

SUB_NO INTEGER  NOT NULL, 

SUB_NAME  CHAR(20), 

DEPT_NO  INTEGER, 

CREDITS  NUMERIC(2), 

PASS NUMERIC(2), 

PRIMARY KEY (SUB_NO) ); 

Table SUBJECTS successfully created. 
 

 
Note that a column must be declared as NOT NULL before the PRIMARY KEY modifier 

can be applied to it. 
 

 

The FOREIGN KEY modifier. 
This modifier is closely related to the PRIMARY KEY modifier. Most tables contain 

references to primary keys in other tables, called foreign keys. SQL allows you to define 

these relations when you create the table. In the SUBJECTS table for example, the 

DEPT_NO column is a foreign key. Thus a more complete CREATE TABLE statement 

would be: 
 

 
CREATE TABLE SUBJECTS  ( 

SUB_NO  INTEGER NOT NULL, 

SUB_NAME CHAR(20), 

DEPT_NO  INTEGER, 

CREDITS NUMERIC(2), 

PASS NUMERIC(2), 

PRIMARY KEY (SUB_NO), 

FOREIGN KEY  (DEPT_NO) 

REFERENCES DEPARTMENTS ); 
 

 
Table SUBJECTS successfully created. 

 

 
This statement tells SQL that the DEPT_NO column is a foreign key in this table what 

references the DEPARTMENTS table. Since there can only be one primary key for each 

table, the DBMS knows that the DEPT_NO column (foreign key in SUBJECTS) references 

the DEPT_NO column (primary key) in the DEPARTMENTS table. 



I TECH COMPUTER EDUCATION       SQL 

37 

 

 

 
 

The DEFAULT modifier. 
The ANSI/ ISO standard allows you to define default values that columns should have. 

Usually, if no value is supplied for a column, then it is assigned the NULL value. The 

DEFAULT column modifier overrides this. In the SUBJECTS table for example, if the 

default pass mark for an exam is 65%, then we can set this at the CREATE TABLE stage 

by: 

CREATE TABLE SUBJECTS  ( 

SUB_NO INTEGER  NOT NULL, 

SUB_NAME  CHAR(20), 

DEPT_NO INTEGER, 

CREDITS NUMERIC(2), 

PASS NUMERIC(2) DEFAULT 65, 

PRIMARY KEY (SUB_NO), 

FOREIGN KEY (DEPT_NO) 

REFERENCES DEPARTMENTS ); 

Table SUBJECTS successfully created. 
 

 

You should use default values where you would otherwise have to type repetitive data. 

Such as the city column in an address table, where most of the values might be for the 

same city. Default values can also be used as an alternative to NULLs. NULL values 

appear false in any comparison operations and hence tend to be excluded in a lot of SQL 

queries where their inclusion might give more meaningful results. 
 

 

The CHECK modifier. 
Some of the columns in the tables you create will have a range of acceptable values or 

the values may need to be entered in a particular format. The CHECK modifier allows 

you to tell SQL about these acceptable values or format. In the EXAMS table for 

example, the CREDITS awarded for a subject must be greater than 0 and the maximum 

number of credits that can be awarded for any subject is 10. This can be expressed in 

the CREATE TABLE statement as: 
 

 
CREATE TABLE SUBJECTS  ( 

SUB_NO INTEGER NOT NULL, 

SUB_NAME CHAR(20), 

DEPT_NO INTEGER, 

CREDITS NUMERIC(2) CHECK 



I TECH COMPUTER EDUCATION       SQL 

38 

 

 

 
 

(CREDITS > 0 AND CREDITS <= 10), 

PASS NUMERIC(2) DEFAULT 65, 

PRIMARY KEY (SUB_NO), 

FOREIGN KEY (DEPT_NO) 

REFERENCES DEPARTMENTS ); 

Table SUBJECTS successfully created. 
 

 
As with the other column modifiers, CHECK can also be applied as a table constraint. 

This is useful where CHECK is to be applied to more than one column. Thus for the 

LECTURERS table, if a salary of 100,000 or more is only allowed if the lecturer is on 

seniority grade A or B, then we could use CHECK as a table modifier: 
 

 
CREATE TABLE LECTURERS ( 

SURNAME CHAR(15) NOT NULL, 

INITL  CHAR(4), 

LECT_NO INTEGER NOT NULL, 

DEPT_NO INTEGER, 

SUB_NO  INTEGER, 

GRADE                CHAR(1), 

PAY DECIMAL(6), 

JOINED DATE 

UNIQUE (SURNAME, LECT_NO), 

CHECK  (PAY < 100000 OR GRADE <= 'B') ); 

Table LECTURERS successfully created. 
 

 

"Indexes are Ordered for Extremely Fast Searches": 

Inxexes. 
 

 
An index is a database object created and maintained by the DBMS. It is essentially a list 

of the contents of a column or group of columns. Indexes are ordered so that extremely 

fast searches can be conducted through them to find data. The rows in tables are not 

ordered in any particular sequence, they are merely stored in the order in which they 

were inserted into the table. As most large SQL databases have tables with thousands or 

even millions of rows, searching through them to find particular values can become 

quite time consuming. Indexes speed up this search process by keeping a sorted list of 

values which the DBMS can search through. 



I TECH COMPUTER EDUCATION       SQL 

39 

 

 

 
 

How does the DBMS use indexes? To answer this question, let's consider an example. 

Figure shows a table in a corporate database. Assume that it holds records of all 

potential suppliers listed for all the cities of the world. If we run the query for an un- 

indexed table, SQL would need to look through 99003 rows before it found the record 

for Hyderabad, which we wanted. In executing such a query, SQL starts at record 1 and 

checks if the condition CITY = 'HYBD' is true. If it is, then the record is retrieved into the 

results table. SQL then moves on to record 2 and repeats the process. This is done until 

it reaches the last row in the table. 

 
QUERY:  SELECT *  FROM SUPPLIERS 

WHERE CITY = 'HYBD'; 

 
. . . C_NUM QTY CITY . . . . . . 

 ----- --- ----- 

 ~ ~ ~ 

 ~ ~ ~ 

 ~ ~ ~ 

 99001 934 N.Y. 

 99002 467 LOND 

99003 12 HYBD <-----  The query needs to look through 

99004 456 L.A. |  99005 rows to find these records. 

99005 23 HYBD <-----  

The SUPPLIERS table   

 
Now let's see how the query is speeded up by using an index. If the CITY field was 

indexed, then the index will keep an ordered list of all the data in the CITY column as 

well as information that tells the DBMS where to find each record on disk. Figure shows 

how the index is organized. To resolve the query with condition CITY = 'HYBD', 

the DBMS only needs to scan through the index and find the first entry for HYBD. The 

index tells the DBMS where to look in the table to find the actual record. The index 

holds all the entries for HYBD sequentially, and so the database can quickly refer to the 

index to find all the rows where CITY = 'HYBD'. 

KEY-FIELD LOCATION 

. 

. 

. 

HAMBURG 0033433344 



I TECH COMPUTER EDUCATION       SQL 

40 

 

 

 
 

HELSINKI 0042124442 

HYBD 0001276900 

HYBD 0001276902 

JHBG 0034412344 

KBUL 0056789877 

.  

.  

.  

The KEY-FIELD is an ordered list of the CITIES column in the SUPPLIERS table. 

The LOCATION is number that tells the DBMS exactly where on the disk to find each 

record. 
 

 
Although indexing tables has many advantages, it also has disadvantages. Indexes use 

up additional disk space, and also when tables are added to, deleted from or the values 

of indexed columns are modified, the DBMS needs to maintain the index as well. This 

additional makes INSERT, UPDATE and DELETE commands run slower. 
 

 
Indexes are created with the non ANSI/ ISO CREATE INDEX command. On most systems, 

this command also lets you specify the name of the index to be created. Although you 

will not be allowed to directly manipulate the index in any way, the index name is useful 

when you want to delete the index. 
 

 
To create an index on the CITY column of the SUPPLIERS table in Figure for 

example: 
 

 
CREATE INDEX SUPP_CTY_IDX 

ON SUPPLIERS (CITY) ; 
 

 
Index SUPP_CTY_IDX successfully created. 

 

 
We could have also used CREATE UNIQUE INDEX instead of CREATE INDEX. The UNIQUE 

keyword tells SQL that the CITY columns can only contain unique values. Recall that the 

ANSI/ ISO standard allows you to specify UNIQUE as a column modifier in the CREATE 

TABLE statement itself. 



I TECH COMPUTER EDUCATION       SQL 

41 

 

 

 
 

As CREATE INDEX is not a part of the ANSI/ ISO standard, systems vendors allow many 

additional clauses to this command that deal with the physical characteristics of the 

index to be created. 
 

 
Indexes created with the CREATE INDEX command can later be deleted by the DROP 

INDEX command. To get rid of the SUPP_CTY_IDX index: 

DROP INDEX SUPP_CTY_IDX ; 

Index SUPP_CTY_IDX successfully dropped. 
 

 

"Changing the Structure of a Table": 

The ALTER TABLE Command. 
 

 
The ALTER TABLE command allows a user to change the structure of a table. New 

columns can be added with the ADD clause. Existing columns can be modified with the 

MODIFY clause. Columns can be removed from a table by using the DROP clause. The 

syntax of the ALTER TABLE command is shown in Figure. 
 

 
ALTER TABLE tbl_name 

ADD ( 

column definition [BEFORE col_name ] 

{ , column definition [BEFORE col_name ] }*) 

DROP ( col_name { , col_name }*) 

MODIFY ( column definition { , column definition }* ) ; 
 

 
tbl_name 

The name of the table to alter. 
 

 
col_name 

The name of the column to alter. 
 

 
column definition 

See the CREATE TABLE section for the syntax of column definition. 
 

 
The ALTER TABLE command is not part of the ANSI/ ISO standard. According to ANSI/ ISO 

reasoning, you should have designed your tables on paper first, and subsequent 

alterations to them should not be necessary. The nonstandard nature of the ALTER 



I TECH COMPUTER EDUCATION       SQL 

42 

 

 

 
 

TABLE command means that, all the commercial dialects of SQL implement different 

clauses and command syntax. 
 

 

On most systems, you are allowed to add more than one column with a single ALTER 

TABLE command. However, you should not count on this feature. To add the 

departmental phone number column to the DEPARTMENTS table for example: 
 

 
ALTER TABLE DEPARTMENTS 

ADD (PHONE_NO CHAR(12) BEFORE HEAD); 

Table DEPARTMENTS successfully altered. 
 

 
This query alters the structure of the DEPARTMENTS table by adding an additional 

column called PHONE_NO The BEFORE clause is optional and tells SQL to position the 

new column immediately before the column called HEAD. The new structure of the 

table is shown in Figure. If the BEFORE clause is omitted, then the new column will 

be added at the end of the existing columns ie. after P_BUDGET Most dialects of SQL set 

the values in the newly added column to NULL for all extant rows, but as ever, this 

should not always be assumed. 

 
DEPT_NO DEPT_NAME PHONE_NO HEAD BUDGET P_BUDGET 

------- ----------- --------- ---- ------- -------- 

1 Engineering ? 59 5790000 6200000 

2 Art & Humanities ? 23 753000 643000 

3 Management Studies ? 34 2510000 1220000 

4 Industrial Law ? 12 78000 210000 

5 Physical Sciences ? 18 4680000 4250000 

6 Medicine ? 67 6895000 6932000 

 
The ? in the PHONE_NO column indicates a NULL value added to the column values for 

all extant rows. 
 

 
Most forms of ALTER TABLE also allow you to delete columns from tables. Thus: 

ALTER TABLE DEPARTMENTS DROP (PHONE_NO); 
 

 
Table DEPARTMENTS successfully altered. 

 

 
will remove the PHONE_NO column from the DEPARTMENTS table. 



I TECH COMPUTER EDUCATION       SQL 

43 

 

 

 
 

Once the column is dropped, then the data is lost. It cannot be retrieved. 
 

 
The MODIFY clause of the ALTER TABLE command allows you to modify the UNIQUE or 

the NOT NULL status of a column. To make more extensive changes to a column, you 

should DROP it and then ADD it with the changes incorporated. 
 

 
You should only modify the UNIQUE or NOT NULL status of a column if the table is 

empty. If the UNIQUE or the NOT NULL status of a column is modified on a non-empty 

table, an error may occur because duplicate or NULL values of that column may already 

exist in the table data. Changing the structure of a table already populated with data is 

risky to say the least. On corporate databases especially, even on the best administered 

system, there are always some views created by users or embedded SQL programs 

which may no longer function because they relied on the previous structure of the 

modified table. Modifications need to be carefully planned and implemented. 
 

 
For a well designed table, you should never need to change the constraints (UNIQUE, 

NOT NULL etc.) on a table column and you should only use the ALTER TABLE command 

as a last resort, when all else fails. An alternative to using the ALTER TABLE command is 

to simply create a new table with the modified structure and populate it with data from 

the old table. (A simple way of doing this is to use the INSERT command with a SELECT * 

query. This is discussed in full in the next chapter). 
 

 
Remember that in order to be able to use the ALTER TABLE command,  in the first place, 

you must be either the table's owner or have been granted ALL PRIVILEGES for the table 

by the owner. 
 

 

"Remove Redundant Tables from the Database": 

The DROP TABLE Command. 
 

 
As your database evolves, you will eventually want to remove redundant tables from 

the database. The DROP TABLE command is used to delete a table from the database. 

Some DBMSs require that the table to be eliminated must be empty before it can be 

dropped from the database. This is used as a safety feature, to prevent accidental 

deletion of tables that are still in use. You should not count on this and should always 

delete tables with extreme care. 



I TECH COMPUTER EDUCATION       SQL 

44 

 

 

 
 

Since the DROP TABLE option removes all trace of the table as far as SQL is concerned, it 

is important to ensure that no command files, embedded SQL programs or columns 

from other tables refer to the dropped table's fields in the form of foreign keys. Also, 

the table should not be accessed by any VIEWS but most implementations of SQL are 

smart enough to prevent you from deleting tables that have associated views. 
 

 
To delete the STUDENTS table for example: 

DROP TABLE STUDENTS ; 
 

 
Table STUDENTS successfully dropped. 

 

 
Although DROP TABLE is not part of the ANSI standard (ANSI specifies no means of 

destroying table definitions) it is nonetheless, a very useful command for restructuring 

and maintaining your database. 



I TECH COMPUTER EDUCATION       SQL 

45 

 

 

 

 

QUERYING SQL TABLES 
 
 
A query is a method of interrogating an SQL database. It is used to tell the DBMS what 

information you want it to retrieve from the database and also how you want the data 

to appear. When you think about it, the only reason for storing and maintaining a 

database of information is to make it easy to get at the information that you need, when 

you need it. One of the most important functions of any query language is to make the 

retrieval of information as easy and also as powerful as possible for the user. 
 

 
Data retrieval needs to be easy because most of the time, the people who query the 

database are not the same people who programmed the database. Users are not 

interested in the technicalities of how the database is organized or how it is managed. 

The query language needs to have easy to understand (preferably plain english) 

commands that users can use intuitively. The query language also needs to be powerful 

because it needs to be capable of providing users with all the information that they may 

want. As the DBMS has no idea of what the user queries are going to be beforehand, the 

language constructs must be powerful enough to deal with all the requests the user is 

likely to make. 
 

 

"The most basic query": 

The Simple SELECT statement. 
 

 
The SELECT statement allows you to specify the data that you want to retrieve, what 

order to arrange the data, what calculations to perform on the retrieved data and many, 

many more operations. As it's the only SQL verb that enables you to query the database 

and SQL is a query language, it is necessarily the most complex of all SQL commands. 

ANSI/ ISO SQL allows up to six different clauses in the SELECT statement of which the 

first two are mandatory. The syntax of the full SELECT statement is shown in Figure. 
 

 
The simple SELECT statement, as the name implies, is the most elementary form of 

query which uses only the mandatory clauses of the full SELECT. It only requires you to 

supply two pieces of information. First, the columns that you wish to see, and second, 

the name of the table that the columns are in. For example, this query retrieves all the 

rows in the DEPARTMENTS table: 



I TECH COMPUTER EDUCATION       SQL 

46 

 

 

 
 

SELECT DEPT_NO, DEPT_NAME, HEAD, BUDGET, P_BUDGET 

FROM DEPARTMENTS ; 

 
DEPT_NO DEPT_NAME HEAD BUDGET P_BUDGET 

------- --------------------- --------- ------------ ----------- 

1 Engineering 59 5780000 6200000 

2 Arts & Humanities 23 753000 643000 

3 Management Studies 3 2510000 1220000 

4 Industrial Law 12 78000 210000 

5 Physical Sciences 18 4680000 4250000 

 
SELECT [DISTINCT ] field_expression { , field expression }* 

FROM table_spec { , table_spec }* 

[WHERE search condition ] 

[ORDER BY field_name {, field_name }* ] 

[GROUP BY field_name {, field_name }* ] 

[HAVING condition ] 

; 
 

 
field expression 

The field expression may be one of the following: 
 

 
- Field name eg SNO, S.SNO. 

- ANSI aggregate function SUM(), AVG(), MIN(), MAX()  and COUNT(). 

- *  is a special field expression which means select all fields. 
 

 
table_spec 

The name for the table(s) to select from. 
 

 
search condition 

The WHERE search condition specifies what records are to be retrieved in the SELECT. 
 

 
field_name 

The field name may be up to 24 characters in length. 
 

 
condition 

The HAVING condition is used to eliminate some groups from a SELECT query. 



I TECH COMPUTER EDUCATION       SQL 

47 

 

 

 
 

You can specify more than one table name in the FROM clause, but in this case, SQL will 

produce a listing of all the rows from the second named table for each row in the first 

named table. This is known as the cartesian product of the tables. 
 

 
For example: 

SELECT DEPT_NAME, SUB_NAME 

FROM DEPARTMENTS, SUBJECTS ; 
 

 
DEPT_NAME SUB_NAME 

---------------------  --------------------- 

Engineering  Mathematics 

Engineering English Lit 

Engineering  Engineering Drwg 

Engineering  Basic Accounts 

Engineering  Industrial Law 

Engineering  Organic Chemistry 

Engineering  Physiology 

Engineering  Anatomy 

Engineering  Electronics 

Engineering   Marketing 

Arts & Humanities  Mathematics 

Arts & Humanities English Lit 

Arts & Humanities Engineering Drwg 

Arts & Humanities Basic Accounts 

Arts & Humanities  Industrial Law 

Arts & Humanities Organic Chemistry 

Arts & Humanities Physiology 

Arts & Humanities Anatomy 
 

 
The information retrieved by a cartesian product query can quickly grow if more than 

two tables are specified. For three tables of 100 rows each, a cartesian product SELECT 

will produce 1 million result rows. In most cases, the results are not of much use as they 

do not easily relate to real life situations. 
 

 
To find out what the simple SELECT does, let's have a closer look at what the query 

we've just used is telling the DBMS; "SELECT the DEPT_NO, the DEPT_NAME, the HEAD, 

the BUDGET and the P_BUDGET columns FROM the DEPARTMENTS table". 



I TECH COMPUTER EDUCATION       SQL 

48 

 

 

 
 

When you read it out like this, it is obvious what information this query is requesting 

from the DBMS. In most versions of interpreted SQL, the results are displayed as soon as 

the DBMS finishes executing the query. In most cases, the results appear on the screen 

as they are shown in this book. Column names are at the top with the columns shown in 

the order in which they were specified in the SELECT statement. If more columns are 

specified in the SELECT statement than can fit on the screen, on some systems they are 

split up on two or more lines. Other systems allow you to scroll up, down, left or right 

through the results by using the arrow keys. The second method is better because when 

results columns are split up on different lines, the formatting is lost and data appears to 

be displayed haphazardly. 
 

 
The query result rows are not listed in any particular order. The DBMS just lists the rows 

in the order in which it comes across them in the table. 
 

 
Note that all SQL queries (and other statements too, for that matter) end with the 

semicolon character. Newline can be used to format the query into clauses so that it is 

easier to understand what the query is doing when you refer to it several weeks later 

say. Most SQL interpreters and programs treat the newline and the tab characters as 

equivalent to the space character. You can type all SQL statements on a long single line 

if you wanted. To tell SQL that you have finished entering the query, you must type the 

semicolon character at the end. 
 

 
To retrieve all the columns from a table, SQL allows you to use the asterisk, * , character 

as a shortcut. Thus the following query is exactly the same as the previous query where 

we retrieved all the columns from the DEPARTMENTS table: 
 

 
SELECT * 

FROM DEPARTMENTS; 

 
DEPT_NO DEPT_NAME HEAD BUDGET P_BUDGET 

------- ------------------- --------- ------------ ------------ 

1 Engineering 59 5780000 6200000 

2 Arts & Humanities 23 753000 643000 

3 Management Studies 3 2510000 1220000 

4 Industrial Law 12 78000 210000 

5 Physical Sciences 18 4680000 4250000 

6 Medicine 67 6895000 6932000 



I TECH COMPUTER EDUCATION       SQL 

49 

 

 

 
 

In place of the asterisk, you should read "all the fields" in the SELECT statement. Notice 

how the columns in the results appear in the order in which they were defined when the 

table was created. 
 

 

So far, we have looked at SELECT statements that retrieve all the columns from a table. 

In most cases, we are only interested in certain columns in a table. SQL allows us to 

specify these columns in the first clause of the SELECT. As an example, say we wanted to 

look at the pass mark for each subject in the SUBJECTS table, we are only interested in 

the SUB_NAME and the PASS columns in the SUBJECTS table: 
 

 
SELECT PASS, SUB_NAME 

FROM SUBJECTS ; 
 

 
PASS SUB_NAME 

------ --------------- 

65 Mathematics 

60 English Lit 

71 Engineering Drwg 

67 Basic Accounts 

52 Industrial Law 

57 Organic Chemistry 

78 Physiology 

74 Anatomy 

71 Electronics 

56 Marketing 
 

 

If a column list is used the columns in the results table appear in the order in which they 

are specified in the SELECT. You can use this fact to change the order in which the 

columns appear in the results. 
 

 
Leaving columns out of the SELECT statement only affects the results of the query. It 

does not affect the data in the named table in any way. 
 

 
As well as simple column names, the SELECT clause also lets you use scalar expressions 

and string constants. Scalar expressions are simple calculations performed on numeric 

type column values. The results of the calculation are displayed in the results table as 



I TECH COMPUTER EDUCATION       SQL 

50 

 

 

 
 

columns. For example, we can use a scalar expression using the annual pay field to 

display the monthly pay for each lecturer: 

 
SELECT SURNAME, PAY, (PAY / 12) 

FROM LECTURERS ; 

 
SURNAME PAY  

---------------- -------- ----------- 

Jones 24000 2000 

Scrivens 31800 2650 

Nizamuddin 86790 7232 

Campbell 43570 3630 

Ramanujan 40900 3408 

Finley 34210 2850 

 
The third column in the results table has been generated as a direct result of the PAY / 12 

calculation that we specified. The data in this column is not actually stored in any table, 

but has been calculated by SQL. In most versions of SQL, expressions are only allowed to 

use the addition, subtraction, multiplication and division functions. The fields used in 

expressions must be numeric type. Notice that the heading of the generated column is 

the expression that we used in the SELECT clause. This feature depends on the particular 

version of SQL that you use. Some dialects of SQL have blank headings for calculated 

columns. 
 

 
SQL lets you use string constants in the column list to output text messages. When you 

use string constants, the string value will appear in the column position for each row of 

the results table. As with all string values, constants must be inside single quotes: 
 

 
SELECT SUB_NAME, 'has pass mark of', PASS, '%' 

FROM SUBJECTS ; 

 

SUB_NAME  PASS  

--------------------- ----------------- ---- - 

Mathematics has pass mark of 65 % 

English Lit has pass mark of 60 % 

Engineering Drwg has pass mark of 71 % 

Basic Accounts has pass mark of 67 % 



I TECH COMPUTER EDUCATION       SQL 

51 

 

 

 
 

Industrial Law has pass mark of 52 % 

Organic Chemistry has pass mark of 57 % 

Physiology has pass mark of 78 % 

Anatomy has pass mark of 74 % 

Electronics has pass mark of 71 % 

Marketing has pass mark of 56 % 

 
SQL Tips 

SQL Server, Informix and dBase IV accept string constants enclosed in double quotes 

("..."). 
 

 
In this query, the use of string constants is not very elegant. The same comment appears 

for all the result rows. Constants are most useful when used with aggregate functions 

that produce a single calculated value based on the data in tables for example: 

 
SELECT 'The average pass mark is', AVG(PASS), '% per subject' 

FROM SUBJECTS ; 

 
 AVG(PASS)  

------------------------ --------- - ----------- 

The average pass 65.1 % per subject 

 
AVG(PASS) is an aggregate function which calculates the average value of the PASS 

column. This will be discussed further in a later section. 
 

 
ANSI/ ISO SQL defines SELECT statements as part of the DML. ANSI/ ISO SQL further 

defines DML commands as having the ability to change the data in the database. SELECT 

by itself, cannot alter data in the database and so it is not strictly a part of the DML. 

Database data is modified only when SELECT is used in conjunction with other DML 

commands such as INSERT and UPDATE. It is best to think of the SELECT as being in a 

category by itself. 
 

 
SELECT lets you use the DISTINCT keyword to eliminate duplicate rows from the query 

results. Consider the DEPT_NO column in the STUDENTS table. This gives the 

department number that each student belongs to. If we simply wanted to know which 

departments are represented in the STUDENTS table, we could use the DISTINCT 

argument to remove repeat values for this column from the results table: 



I TECH COMPUTER EDUCATION       SQL 

52 

 

 

 
 

SELECT DISTINCT DEPT_NO 

FROM STUDENTS ; 
 

 
DEPT_NO 

--------- 

1 

2 

3 

4 

5 
 

 
DISTINCT is very useful in queries where you simply want to know if a value is present in 

a table and are not interested in how many times it occurs. DISTINCT itself can only be 

used once in a SELECT statement. However, you can specify more than one column after 

DISTINCT. In this case, SQL will eliminate those rows where the values are the same in all 

the columns. 
 

 
The opposite of DISTINCT is ALL. This is the default that SQL assumes if neither is 

specified. In practice, ALL is not used. It is understood that if DISTINCT is absent, then 

the default, ALL is in effect and all columns, including duplicates will be displayed in the 

results table. 
 

 

Calculated columns. 
As well as using simple column names, you can also specify scalar mathematical 

expressions. These are known as calculated columns; for example: 
 

 
SELECT DEPT_NAME, (BUDGET + 15000), (BUDGET - P_BUDGET), 

(BUDGET * 2.25), (BUDGET /  4.5) 

FROM DEPARTMENTS; 

DEPT_NAME 

-------------------- ------- -------- --------- ---------- 

Engineering 5795000 -420000 65025000 1284444.4 

Arts & Humanities 768000 110000 8471250 167333.3 

Management Studies 2525000 1290000 28237500 557777.7 

Industrial Law 93000 -132000 877500 17333.3 

Physical Sciences 4695000 430000 52650000 1040000 

Medicine 6910000 -37000 77568750 1532222.2 



I TECH COMPUTER EDUCATION       SQL 

53 

 

 

 

 
 
 

This query demonstrates the use of calculated columns. You are allowed to use the 

addition, subtraction, multiplication and division mathematical functions with both 

numeric constants and column names as long as the columns involved are numeric type 

columns. Trying to use non-numeric column types will cause an error. 
 

 

"Selecting rows for output": 

The WHERE clause. 
 

 
One of the most useful feature of the SQL query is that it allows you to selectively 

retrieve only those rows that interest you. In a large database, with thousands of rows 

in each table, you may only be interested in a handful of records at any time. The 

WHERE clause of the SELECT statement lets you specify a predicate, which tells SQL 

what records are to appear in the results. A predicate is a logical expression that can be 

either true or false. As an example, consider in the DEPARTMENTS table, the predicate 

"department name is Engineering". For any row in the DEPARTMENTS table, this 

predicate is either true or false. The department name is either "Engineering" or it is 

not. Now let's use this predicate in the WHERE clause of a SELECT statement: 
 

 
SELECT * 

FROM DEPARTMENTS 

WHERE DEPT_NAME = 'Engineering' ; 

 
DEPT_NO DEPT_NAME HEAD BUDGET P_BUDGET 

--------- ------------- ------ --------- ---------- 

1 Engineering 59 5780000 6200000 

 
Notice that the word Engineering is in single quotes. These must be used to specify all 

text strings. This query retrieves all the rows in the DEPARTMENTS table where the 

DEPT_NAME is Engineering. In this case, it retrieves only one record. In this query, we 

have used the asterisk to retrieve all the columns from DEPARTMENTS in the results. 

You do not have to include the columns that appear in the WHERE clause in the 

results, but it helps to highlight what the query is doing. 
 

 

When processing a query with a predicate, the DBMS goes through all the rows in the 

table and checks to see if the predicate is true or false for each row. This is the type of 

query which is greatly speeded up if the row that is used in the predicate is indexed. 



I TECH COMPUTER EDUCATION       SQL 

54 

 

 

 
 

Comparison Test Operators: =, <, <=, >, >=, <>. 
In the previous section we saw how predicates evaluate equivalence statements as 

either true or false. As well as the equals to operator, (=), SQL also allows you to use the 

other comparison operators shown in Figure. The predicate resolves to either true or 

false for each row in the table for all these comparison operators as well. For example, 

lets run a query that gets the names of all those lecturers who earn more than 

60,000: 

 
Comparison  

Operator Relation Example of use 

---------- -------- -------------- 

= Equals to surname = 'Jones' 

< Less than mark < 65 

> Greater than salary > 45000 

<= Equal to or less than surname <= 'Smith' 

>= Equal to or greater than date >= 12-Aug-1993 

<> Not equal to dept_no <> 14 

 
SELECT INITL, SURNAME 

FROM LECTURERS 

WHERE PAY > 60000; 
 

 
INITL SURNAME 

------ ------------- 

W M Nizamuddin 
 

 
The operators shown in Figure are standard mathematical signs that act on numerical 

information. In SQL predicates, they can also be applied to character type values. The 

result of the predicate will depend on the character representation system used by the 

computer's operating system. Most microcomputer and minicomputer systems use the 

ASCII system. Some large mainframes use a system known as EBCDIC. Both these 

systems represent alphanumeric characters as numeric values that the computer can 

understand. SQL uses these underlying numeric values as the basis of comparison. In 

this book, we will assume that all the examples we use are run on an ASCII system. As 

this is the most popular system, this is quite a good assumption. Let's look at an 

example. In the STUDENTS table, to list the names of all the students whose surname 

begins with characters from M to Z: 



I TECH COMPUTER EDUCATION       SQL 

55 

 

 

 
 

SELECT SURNAME, FIRST_NAME 

FROM STUDENTS 

WHERE SURNAME > 'M'; 
 

 
SURNAME FIRST_NAME 

---------------- --------------- 

Patel Mahesh 

Scott  Gavin T J 

Monkhouse Robert Jones 

Middleton Jane P Mulla

 Farook F U 

Wickes Wendy Y Y W 
 

 

SQL Tips 

The ANSI/ ISO standard specifies the inequality operator as <>. IBM's DB2 and SQL/DS 

use ¬= and SQL Server uses !=. 
 

 
Notice that the rows are not arranged in alphabetical order. SQL lists the rows in the 

order in which it finds them in the table. Ordering is possible in SELECT, and this will be 

discussed in later sections of this chapter. 
 

 

In the previous query, we used the uppercase character, M, in the predicate. It is 

important to remember that M is not the same as m. If we had used the lowercase 

character instead, SQL would not have found any matching records: 
 

 
SELECT SURNAME, FIRST_NAME 

FROM STUDENTS 

WHERE SURNAME > 'm'; 

No matching records found. 
 

 
The reason for this query coming up empty is that in the ASCII scheme, uppercase 

characters are defined as being less (they have a lower underlying numeric value) than 

lowercase characters. All the surnames in the STUDENTS table start with an uppercase 

letter and so in the ASCII scheme, they are all less than the lowercase m. The values 

assigned in ASCII are reversed in EBCDIC, so lowercase characters are less than 

uppercase. You need to be sure which scheme your computer system uses before 

constructing your queries. 



I TECH COMPUTER EDUCATION       SQL 

56 

 

 

 
 

Range Test Operator: BETWEEN. 
The BETWEEN range test operator allows you to define a predicate in the from of a 

range. If a column value for a row falls within this range, then the predicate is true and 

the row will be added to the results table. The BETWEEN range test consists of two 

keywords, BETWEEN and AND. It must be supplied with the upper and the lower range 

values. The first value must be the lower bound and the second value, the upper bound. 
 

 
For example, in the LECTURERS table, if we wanted to look at the records of all those 

lecturers who earn between 31,800 and 40,900: 
 

 
SELECT SURNAME, PAY 

FROM LECTURERS 

WHERE PAY BETWEEN 31800 AND 40900; 
 

 
SURNAME PAY 

---------------- --------- 

Scrivens 31800 

Ramanujan 40900 

Finley 34210 
 

 
This query retrieves three records. Notice that the upper and lower parameters are 

inclusive. This means that the rows where pay equals 31,800 (lower bound) and 40,900 

(upper bound) are also retrieved in the results. SQL will not allow you to specify the 

upper bound first. Thus the following query does not return any records: 
 

 
SELECT SURNAME, PAY 

FROM LECTURERS 

WHERE PAY BETWEEN 40900 AND 31800 ; 

No matching records found. 

You can use character values as upper and lower range bounds: 
 

 
SELECT * 

FROM LECTURERS 

WHERE SURNAME BETWEEN 'N' AND 'R' ; 



I TECH COMPUTER EDUCATION       SQL 

57 

 

 

 
 

SURNAME INITL LECT_NO DEPT_NO SUB_NO GRADE PAY JOINED 

---------- ----- ------- ------- ------ ----- ------ ---------- 

Nizamuddin W M 3 3 4 A 86790 05-26-1969 

 
The query only retrieves one row because Nizamuddin is between N and R, but 

Ramanujan is not. When comparing strings of unequal length, SQL pads out the smaller 

string with spaces before doing the comparison. As the space character has a lower 

value than letter characters in the ASCII scheme, the word Ramanujan falls outside the 

upper bound. 
 

 

BETWEEN does not actually add any new functionality to SQL. All queries that use 

BETWEEN can be rephrased to run using only the comparison test operators instead. 

For example the last query can be expressed without using BETWEEN as: 
 

 
SELECT * 

FROM LECTURERS 

WHERE (SURNAME >= 'N') AND (SURNAME <= 'R') ; 

 
SURNAME INITL LECT_NO DEPT_NO SUB_NO GRADE PAY JOINED 

----------- ----- ------- ------- ------ ----- ------ ---------- 

Nizamuddin W M 3 3 4 A 86790  05-26-1969 

 
The AND keyword is a boolean operator that tells SQL that both expressions inside the 

parentheses must be true for the predicate to be true. Although this query is 

functionally the same as the previous query, the one using BETWEEN is more elegant 

and it is clearer to the reader what the query is trying to achieve. 
 

 

Set Membership Test Operator: IN. 
We've seen that BETWEEN defines a range of values to check against for inclusion or 

exclusion from the results table. This is not always enough. What if you needed to check 

for certain values only? Values that do not always fit into a neat range. To accommodate 

this, SQL allows the use of the IN operator. An example will illustrate the use of IN. In 

the SUBJECTS table, if we wanted to look at the rows of the Anatomy and the Physiology 

subjects, we could use a query with IN: 
 

 
SELECT * 

FROM SUBJECTS 



I TECH COMPUTER EDUCATION       SQL 

58 

 

 

 
 

WHERE SUB_NAME IN ('Anatomy', 'Physiology') ; 

SUB_NO SUB_NAME DEPT_NO CREDITS PASS 

------ ------------- ------- ------- ---- 

7 Physiology 6 3 78 

8 Anatomy 6 1 74 

 
You must define the set values within parentheses, and must separate each value with a 

comma. In this example, we have used string values. IN also allows other valid data 

types to be used as set members for example to list the subjects rows given that their 

pass marks are 52, 56 and 57: 
 

 
SELECT SUB_NAME, PASS 

FROM SUBJECTS 

WHERE PASS IN (52, 56, 57); 

SUB_NAME PASS 

-------------------- ---- 

Industrial Law  52 

Organic Chemistry 57 

Marketing 56 
 

 
As with all the SQL query commands, the result records are not displayed in any order 

unless the ordering is explicitly specified. In the above query for example, we specified 

pass marks of 52, 56 and 57 in the inclusion set. The results table displayed the rows in 

the 52, 57, 56 order. The reason for this is that this is the order in which the DBMS 

found the rows in the table. 
 

 
As with BETWEEN, IN does not add to SQL's functionality. What IN does can also be 

accomplished by using comparison and boolean operators. For example, the previous 

query can also be expressed as: 
 

 
SELECT SUB_NAME, PASS 

FROM SUBJECTS 

WHERE PASS = 52 

OR PASS = 56 

OR PASS = 57 ; 



I TECH COMPUTER EDUCATION       SQL 

59 

 

 

 
 

SUB_NAME PASS 

--------------------- ---- 

Industrial Law 52 

Organic Chemistry 57 

Marketing 56 
 

 

Pattern Matching Test Operator: LIKE. 
The LIKE operator is used to match string pattern values. LIKE uses wildcard characters 

to specify one or more string character values. ANSI/ ISO SQL defines two wildcard 

characters, the underscore (_) and the percent (%). These are the characters that are 

almost universally used in commercial SQL systems for pattern matching. 
 

 
String pattern matching is useful in cases where you are not sure of the exact string 

value that you need to search for. For example if you cannot remember the spelling of a 

person's name: 
 

 
SELECT * 

FROM STUDENTS 

WHERE SURNAME LIKE 'A_ton'; 

 
SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

--------- ----------- ---------- ---------- ------- ---- 

Ayton Phil J M A 07-13-1967 3 3 1 
 

 
The underscore character is one of the wildcards, and is used to represent any valid 

character (one only). In this query, we are not sure if the student's surname is spelt as 

Ayton or Aeton or even Aiton. The LIKE 'A_ton' predicate tells SQL that the first letter of 

the surname is 'A' and the last three letters are 'ton', but we are not sure of the second 

letter. If you are familiar with the MS-DOS or OS/2 or UNIX operating systems, then the 

_ character performs the same function in SQL as ? does in MS-DOS, and . does in UNIX. 
 

 
The previous query told SQL to retrieve those rows where the second letter of the 

surname is any valid character. The rest of the pattern ie. the first and the last three 

letters must match exactly as specified. 
 

 
The second wildcard character you can use in LIKE is the percent (%) character. This is 

used to represent a sequence of zero or more characters. The percent wildcard in SQL 



I TECH COMPUTER EDUCATION       SQL 

60 

 

 

 
 

corresponds to the *  wildcard in MS-DOS and OS/2 and UNIX. Let's use percent to look 

at the records of all those students whose surname ends in 'ton': 
 

 
SELECT * 

FROM STUDENTS 

WHERE SURNAME LIKE '%ton' ; 

 
SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

--------- ----------- ---------- ---------- ------- ---- 

Ayton Phil J M A  07-13-1967 3 3 1 

 
You can also mix and match the % and the _ wildcard characters in a single query: 

 

 
SELECT * 

FROM STUDENTS 

WHERE SURNAME LIKE 'A_t%' ; 

 
SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

--------- ----------- ---------- ---------- ------- ---- 

Ayton Phil J M A 07-13-1967 3 3 1 
 

 
The % and _ characters are themselves legal ASCII characters. Using valid characters as 

wildcards can cause problems. What if you wanted to use % or _ as part of the string 

and not as wildcards? SQL's solution to this is to allow you to define and use the escape 

character. The escape character has a special meaning in the LIKE string in that the 

character immediately following it is treated as a regular character and not a wildcard. 
 

 
For example suppose we wanted to search for the string '_search%' where % and _ are 

regular characters and not wildcards, then we could use the following query with the 

ESCAPE clause: 
 

 
SELECT * 

FROM SUBJECTS 

WHERE SUB_NAME LIKE '$_search$%' ESCAPE '$' ; 

No matching records found. 



I TECH COMPUTER EDUCATION       SQL 

61 

 

 

 
 

The ESCAPE clause at the end of the query defines the dollar ($) character as the escape 

character. In the string, '$_search$%', % and _ are treated as characters and not as 

wildcards. Of course, this query comes up empty because we do not have a subject 

called '%search_' in the SUBJECTS table. 
 

 

SQL Tips 

IBM's DB2, OS/2 Extended Edition, Oracle and SQL Server do not support the ESCAPE 

clause. 
 

 

NULL Value Test Operator: IS NULL. 

As we know NULL values are used to indicate that no data has been defined yet. This is 

different from blank string values or zero numeric values. Blank and zero values are just 

that, values. NULL marks the column as not having any definite value. When you use 

NULLs in SQL expressions, the result will always be undefined. For example, if you 

wanted to look at the rows in the LECTURERS table where the value for the DEPT_NO 

field is NULL, the following query will not retrieve the results you want: 
 

 
SELECT SURNAME, DEPT_NO 

FROM LECTURERS 

WHERE DEPT_NO = NULL ; 
 

 
SURNAME DEPT_NO 

--------------- ------- 

Jones 1 

Scrivens 3 

Nizamuddin 3 

Campbell 5 

Ramanujan 4 

Finley 4 
 

 

The DBMS retrieved all the lecturers row in our system because the predicate 

"DEPT_NO = NULL" is unknown for all the rows. It is neither true nor false. Another 

DBMS could just as easily have not retrieved any rows depending upon how it treats 

unknown predicate results. SQL provides the IS NULL operator to search specifically for 

NULL values. The valid form of the previous query is thus: 



I TECH COMPUTER EDUCATION       SQL 

62 

 

 

 
 

SELECT SURNAME, DEPT_NO 

FROM LECTURERS 

WHERE DEPT_NO IS NULL ; 
 

 
No matching records found. 

 

 

The NOT logical operator (discussed in the next section) can be used to reverse the 

meaning of IS NULL. To retrieve the rows of those lecturers where the DEPT_NO value 

is not NULL: 
 

 
SELECT SURNAME, DEPT_NO 

FROM LECTURERS 

WHERE DEPT_NO IS NOT NULL ; 
 

 
SURNAME DEPT_NO 

--------------- ------- 

Jones 1 

Scrivens 3 

Nizamuddin 3 

Campbell 5 

Ramanujan 4 

Finley 4 
 

 
NOT can also be used with the other operators, eg NOT BETWEEN and NOT LIKE to 

reverse their meaning. 
 

 

Logical Operators: AND, OR and NOT. 
The scope of the WHERE clause and the operators used with it can be extended by using 

the logical operators  AND, OR and NOT. They enable you to specify compound search 

conditions to fine tune your data retrieval requirements. The functioning of these 

operators is shown in Figure. The logical operators link multiple predicates within a 

single WHERE clause. For example, to see the records of those subjects which have a 

credit value of 1 and whose pass mark value is greater than 70%, we need two 

predicates in the WHERE clause: 



I TECH COMPUTER EDUCATION       SQL 

63 

 

 

 
 

Logical  

Operator Usage Result 

-------- --------------------------- -------------------- 

AND Predicate1 AND Predicate2 Returns true if both Predicate 1 and 

Predicate 2 are true. 

OR Predicate1 OR Predicate2 Returns true if either Predicate 1 or 

Predicate 2 are true. 

NOT NOT Boolean Expression1 Returns true if Expression 1 is false. 

Returns false if Expression 1 is true. 
 

 
SELECT SUB_NAME 

FROM SUBJECTS 

WHERE CREDITS = 1 

AND PASS > 70 ; 
 

 
SUB_NAME 

-------------------- 

Engineering Drwg 

Anatomy 
 

 
The WHERE evaluates to true if both the first predicate (CREDITS = 1) AND the second 

predicate (PASS > 70) are true. As with the single predicate query, the DBMS processes 

all the rows in the STUDENTS table one by one and checks to see if this multiple 

predicate evaluates to true or false for each row. You can use as many logical operators 

as you like to link predicates into complex expressions: 
 

 
SELECT *  FROM LECTURERS 

WHERE DEPT_NO = 4 

AND (GRADE > 'C' OR PAY <= 30000) 

AND NOT LECT_NO = 5; 
 

 
SURNAME INITL LECT_NO   DEPT_NO   SUB_NO GRADE PAY JOINED 

------- -----  ------- ------- ------  ----- ------ ---------- 

Finley G Y 6 4 5 D 34210  03-28-1960 
 

 
SQL lets you group expressions by using parentheses. These have the same effect in 

SQL expressions as they do in mathematical expressions. The expressions inside the 



I TECH COMPUTER EDUCATION       SQL 

64 

 

 

 
 

parenthesis are evaluated first, and are treated as a single expression. In the above 

query, AND applies to the expression inside the parenthesis as a whole, ie. GRADE > 'C' 

OR PAY <= 30000. When you are analyzing complex WHERE clauses, it is best to break 

the WHERE into it's constituent predicates and reading them in plain english. 
 

 
Let's apply this to the last query. The first search condition is "department number is 

equal to 4". The AND links this to a parenthesized expression, "either the grade is lower 

than C or pay is 30000 or less". You need to be careful here because grade D is lower 

than grade C but the character D is greater than C. The last predicate is slightly more 

tricky. In english, we would say " lecturer number is not equal to 5". SQL doesn't let you 

construct this as LECT_NO NOT = 5. The NOT must precede the boolean expression that 

it operates on. If we now put these all together, the WHERE clause can be expressed as 

"Where department number is equal to 4 and either the grade is lower than C or pay is 

30000 or less and also, the lecturer number is not equal to 5". 
 

 

SQL Tips 

The ANSI/ ISO standard specifies that NOT has the highest precedence, followed by AND 

and then OR. 
 

 

"Ordering the output of a query": 
The ORDER BY clause. 

 

 
In all the queries we've seen so far, the rows in the results table have not been ordered 

in any way. SQL just retrieved the rows in the order in which it found them in the table. 

The ORDER BY clause allows you to impose an order on the query results. 
 

 
You can use ORDER BY with one or more column names to specify the ordering of the 

query results. For example, to list student's records in alphabetical order by surname: 
 

 
SELECT * 

FROM STUDENTS 

ORDER BY SURNAME ; 



I TECH COMPUTER EDUCATION       SQL 

Mulla Farook F U 10-24-1968 14 3 2 

65 

 

 

 
 

SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

---------- ------------- ----------- ---------- - ------ ---- 

Al-Essawy Zaid M A 11-26-1970 2 4 2 

Ayton Phil J M A 07-13-1967 3 3 1 

Baker Abu-Mia 03-13-1971 7 4 1 

Brown Joseph P A 04-19-1970 8 3 3 

Duke Fitzroy 11-26-1970 1 4 2 

Grimm Hans Johan 06-21-1971 10 2 1 

Gyver Sue L J V 07-30-1968 11 4 2 

Hung-Sun Jimmy Lau 08-11-1969 12 1 3 

Jones Gareth P Y 01-24-1970 5 2 1 

Layton Hugh 11-16-1971 15 5 1 

Middleton Jane P 09-14-1971 13 1 3 

Monkhouse Robert Jones 05-23-1967 9 1 1 

Mulla Farook F U 10-24-1968 14 3 2 

Patel Mahesh 12-07-1970 4 2 1 

Scott  Gavin T J 02-20-1971 6 2 2 

 
The ORDER BY clause only affects the manner in which these rows are displayed by SQL. 

If there are NULL values in the ORDER BY column then they appear either at the 

beginning or at the end of the list depending on your dialect of SQL. 
 

 
This query listed the student's rows alphabetically by SURNAME, in ascending order. 

This is the default. We can explicitly specify the ordering by using the ASC (for 

ascending) and the DESC (for descending) keywords. If we had used DESC in the 

previous query: 
 

 
SELECT * 

FROM STUDENTS 

ORDER BY SURNAME DESC ; 

 
SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

----------- ------------- ---------- ----------- ------- ---- 

Wickes Wendy Y Y W 12-05-1969 16 1 1 

Scott  Gavin T J 02-20-1971 6 2 2 

Patel Mahesh 12-07-1970 4 2 1 



I TECH COMPUTER EDUCATION       SQL 

Mulla Farook F U 10-24-1968 14 3 2 

66 

 

 

 
 

Monkhouse Robert Jones 05-23-1967 9 1 1 

Middleton Jane P 09-14-1971 13 1 3 

Layton Hugh 11-16-1971 15 5 1 

Jones Gareth P Y 01-24-1970 5 2 1 

Hung-Sun Jimmy Lau 08-11-1969 12 1 3 

Gyver Sue L J V 07-30-1968 11 4 2 

Grimm Hans Johan 06-21-1971 10 2 1 

Duke Fitzroy 11-26-1970 1 4 2 

Brown Joseph P A 04-19-1970 8 3 3 

Baker Abu-Mia 03-13-1971 7 4 1 

Ayton Phil J M A 07-13-1967 3 3 1 

 
The students are now listed in reverse alphabetical order. Note that ASC is optional. If 

neither DESC OR ASC is specified then ASC is assumed to be in effect. 
 

 
You can use ORDER BY with more than one column. In this case, SQL will use the first 

column as the primary ordering field, the second column as the secondary and so on. In 

our STUDENTS table for example, to list the student's records by departments and 

within each department by surname: 
 

 
SELECT * 

FROM STUDENTS 

ORDER BY DEPT_NO, SURNAME ; 
 

 
SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

----------- ------------ ---------- ---------- ------- ---- 

Hung-Sun Jimmy Lau 08-11-1969 12 1 3 

Middleton Jane P 09-14-1971 13 1 3 

Monkhouse Robert Jones 05-23-1967 9 1 1 

Wickes Wendy Y Y W 12-05-1969 16 1 1 

Grimm Hans Johan 06-21-1971 10 2 1 

Jones Gareth P Y 01-24-1970 5 2 1 

Patel Mahesh 12-07-1970 4 2 1 

Scott  Gavin T J 02-20-1971 6 2 2 

Ayton Phil J M A 07-13-1967 3 3 1 

Brown Joseph P A 04-19-1970 8 3 3 



I TECH COMPUTER EDUCATION       SQL 

67 

 

 

 
 

Al-Essawy Zaid M A 11-26-1970 2 4 2 

Baker Abu-Mia 03-13-1971 7 4 1 

Duke Fitzroy 11-26-1970 1 4 2 

Gyver Sue L J V 07-30-1968 11 4 2 

 
Notice that the rows in the results table are now ordered by the DEPT_NO field. This is 

the primary ordering field. Within each department, the students are displayed in 

alphabetical order by SURNAME. This is the secondary ordering field. Although you can 

use as many ordering fields as you like in the ORDER BY clause, the ANSI/ ISO standard 

requires that the columns used in the ORDER BY clause are also displayed in the results 

table. This means that they must be specified in the SELECT clause, either explicitly by 

name, or implicitly by using the asterisk. This ANSI/ ISO requirement is not enforced by 

all SQL dialects but it is a good idea to adhere to it anyway for portability reasons. 
 

 
You have seen how to order results rows by using column names in the ORDER BY 

clause. What if you don't know what the column name is? Such situations are not as 

remote as you might think. For example calculated columns and aggregate functions 

cannot be referred to by their column name. To overcome this, ORDER BY also accepts 

column number values. For example, we can list the contents of the DEPARTMENTS 

table in allocated budget order either by specifying ORDER BY BUDGET or by specifying 

the column number: 
 

 
SELECT DEPT_NO, DEPT_NAME, BUDGET 

FROM DEPARTMENTS 

ORDER BY 3 ; 

 
DEPT_NO DEPT_NAME BUDGET 

--------- --------------------- ------------ 

6 Medicine 6895000 

1 Engineering 5780000 

5 Physical Sciences 4680000 

3 Management Studies 2510000 

2 Arts & Humanities 753000 

4 Industrial Law 78000 

The first column specified in the SELECT clause is always column 1. Subsequent columns 

have numeric values according to where they are specified in SELECT and not where 

they occur in the table itself. This applies to calculated columns as well: 



I TECH COMPUTER EDUCATION       SQL 

68 

 

 

 
 

SELECT DEPT_NAME, (BUDGET *  2.25) 

FROM DEPARTMENTS 

ORDER BY 2 ; 

 
DEPT_NAME  

-------------------- ----------- 

Medicine 775687500 

Physical Sciences 526500000 

Industrial Law 877500 

Management Studies 28237500 

Arts & Humanities 8471250 

Engineering 65025000 

 

"Summary of data in tables": 

The ANSI aggregate functions. 
 

 
The rows in a table are elemental pieces of information that you can use to base your 

decisions on. Very often, the data that you need can be found directly in one or more 

columns. But sometimes, the data is based on the values of all the rows in the table. For 

example, if you need to know the average mark in the exams table, you must add up the 

marks for all the students, then divide that value by the number of students in the table. 

ANSI/ ISO SQL provides five functions, known as aggregate functions which can be used 

to summarize data in tables. These functions operate on the table data and produce a 

single value as output. 
 

 
The five ANSI/I SO functions are: 

COUNT()             outputs the number of rows or column values that would be selected by 

the query. The function does not actually list any of the rows, but only a 

value denoting the total number of rows or column values that the 

query retrieves. 

SUM() outputs the sum total of all the column values that are addressed by the 

query. This function can only be used with numeric type columns. 

AVG() outputs the average (arithmetic mean) of the column values addressed 

by the query. As with the SUM() function, AVG() can only be used with 

numeric type columns. 

MIN() outputs the minimum, the smallest, column value from those that are 

addressed by the query. 



I TECH COMPUTER EDUCATION       SQL 

5 

69 

 

 

 
 

MAX() outputs the maximum, the largest, column value from those that are 

addressed by the query. 
 

 

Aggregate functions can be used in the select list just like regular columns with the 

following provisions: You cannot nest aggregate functions and you cannot mix regular 

columns and aggregate functions in the same query. 
 

 

The number of values or rows: The COUNT() function. 
There are two different versions of the COUNT() aggregate function that ANSI/ ISO 

allows. The first counts and lists the number of non-NULL values in a particular column. 

The second counts and displays the total number of rows that would be retrieved by a 

query. These two versions of COUNT() differ only in the arguments that are passed to 

them. 
 

 
Let's use COUNT() to count the number of data values in a column. To find out how 

many students have been assigned to a department in the STUDENTS table: 
 

 
SELECT COUNT(DEPT_NO) 

FROM STUDENTS; 
 

 
COUNT(DEPT_NO) 

---------------------- 

16 
 

 
In our case, all the students are assigned a department number and the number output 

by the query is the same as the number of students there are in the table. If this were 

not the case, ie. if there were NULL values in the DEPT_NO field for some of the 

student's rows, then these rows would not appear in the COUNT() function's total. To 

count the number of different values in a column, the column name must be preceded 

by the DISTINCT keyword. For example, to look at the number of different departments 

that are represented in the DEPT_NO field of the STUDENTS table: 
 

 
SELECT COUNT(DISTINCT DEPT_NO) 

FROM STUDENTS; 

COUNT(DEPT_NO) 

----------------------- 



I TECH COMPUTER EDUCATION       SQL 

261270 

70 

 

 

 
 

The output from this query is 5 because there are five different department number 

values in this column. The ANSI/ ISO standard states that DISTINCT must be used with 

column names in the COUNT() function, most commercial versions of SQL relax this 

requirement and leave it up to the user to use DISTINCT or not. 
 

 
As pointed out earlier, the COUNT() function can also be used to count rows in a table 

as well as column values. To do this, COUNT() must be used with an asterisk. To count 

the number of rows in the EXAMS table: 
 

 
SELECT COUNT(*) 

FROM EXAMS; 

COUNT(*) 

-------- 

19 
 

 
The COUNT(*) total includes all the rows addressed by the query, including NULL and 

duplicate rows. If we are only interested in knowing the number of exams taken by a 

particular student, we would have to use the WHERE clause to retrieve those rows that 

we are interested in: 
 

 
SELECT COUNT(*) 

FROM EXAMS 

WHERE STUDENT_NO = 1 ; 

COUNT(*) 

--------- 

3 
 

 

The total of values: The SUM() function. 
The SUM() aggregate function calculates the sum total of the values in a column. The 

parameter passed to SUM() must be the name of the column either by itself or used in a 

scalar expression. The data in the columns used by SUM() must be numeric of type such 

as integer, decimal etc. Let's use SUM() to find the total expenditure on staff pay: 

SELECT SUM(PAY) 

FROM LECTURERS ; 

SUM(PAY) 

-------- 



I TECH COMPUTER EDUCATION       SQL 

71 

 

 

 
 

This query adds up all the values in the PAY column and lists the final total. The output of 

SUM() (and also the other aggregate functions that deal with numeric type data) is 

usually of the same data type as the column data but sometimes, the result is of greater 

precision then the column data. 
 

 
You can use scalar expressions as parameters to the aggregate functions. The 

following query adds 1500 to each lecturer's pay and calculates the sum total: 
 

 
SELECT SUM(PAY), SUM(PAY + 1500) 

FROM LECTURERS ; 
 

 
SUM(PAY) SUM(PAY+1500) 

----------  ------------- 

261270 270270 
 

 
In this simple example, we could have calculated this value by adding 1500 x 6 = 9000 to 

the SUM(PAY) value. Scalar expressions are most useful when you want to look at say, 

the total expenditure on pay for a percentage increase in salary for each lecturer. For 

example, this query finds the total expenditure on pay if we increase each lecturer's 

salary by 7.5%: 
 

 
SELECT SUM(PAY), SUM(PAY *  1.075) 

FROM LECTURERS ; 
 

 
SUM(PAY) SUM(PAY*1.075) 

----------- -------------- 

261270 280865 
 

 

The average value: The AVG() function. 
The AVG() function calculates the average or arithmetic mean of the values in a column. 

AVG() can only be applied to numeric type columns and outputs a numeric value. SQL 

calculates the average by adding up all the values in the column, then dividing the total 

by the number of values. As an example, the following query calculates the average pay 

for a lecturer: 
 

 
SELECT AVG(PAY) 

FROM LECTURERS ; 



I TECH COMPUTER EDUCATION       SQL 

72 

 

 

 
 

AVG(PAY) 

--------- 

43545 
 

 
We can also selectively calculate averages. This query finds the average mark obtained 

by students in a particular subject: 
 

 
SELECT AVG(MARK) 

FROM EXAMS 

WHERE SUB_NO = 5 ; 

AVG(MARK) 

--------- 

55 
 

 

The minimum and maximum values: The MIN() and MAX() 

functions. 
The MIN() function finds the smallest value in a column of data. MIN() can operate on 

string and numeric data types as well as non-ANSI types such as date and time. For 

example, to find the earliest date when a lecturer joined the staff: 

SELECT MIN(JOINED) 

FROM LECTURERS ; 

MIN(JOINED) 

------------- 

03-28-1960 
 

 

SQL Tips 

In the EBCDIC character set, which is used in IBM mainframes, the lowercase characters 

precede the uppercase characters which precede digits. 
 

 
Most dialects of SQL treat earlier dates and times as being less than later dates and 

times. So to find the last date when a lecturer joined the staff: 

SELECT MAX(JOINED) 

FROM LECTURERS ; 

MAX(JOINED) 

------------ 

03-25-1990 



I TECH COMPUTER EDUCATION       SQL 

73 

 

 

 
 

MIN() and MAX() both allow you to use scalar expressions as well as column names as 

parameters. For example, if the average pass mark for all subjects was found to be 58%, 

then this query finds the lowest difference in percentage points between this mark 

and the exam marks: 
 

 
SELECT MIN(58 - MARK) 

FROM EXAMS ; 

MIN(58 - MARK) 

-------------- 

-31 
 

 
The query comes up with the answer of -31 because the highest mark in EXAMS is 89 

and 58 - 89 = -31. This result may not be what you expected and serves to illustrate an 

important point. You need to be careful when wording your queries to ensure that they 

do what you intend them to do. 

 
The order of precedence within the data types is shown in Figure. Remember that this 

applies only to the ASCII character scheme. 

 
 DATES NUMERIC STRING 

----- ------- ------ 

^ 01-JAN-1980 -100.50 123ABC 

|  31-JAN-1980 0.40 ABCDEF 

|  01-DEC-1980 0 Abcdef 

|  01-JAN-1981 250.30 abcdef 

DECREASE    

 
SQL Tips 

The ANSI/ ISO standard specifies that NULL values are ignored by the column functions. 
 

 

Sub-totals of values: The GROUP BY clause. 
The aggregate functions described in the previous section have been used to produce 

grand totals. Values output by them are just like the totals that appear at the end of 

each column listing in a report. You can also use these functions to output sub-total 

values. The GROUP BY clause of the SELECT statement lets you split up the values in a 

column into subsets. The aggregate functions are then applied to these subsets instead 



I TECH COMPUTER EDUCATION       SQL 

74 

 

 

 
 

of the column as a whole. For example, in the EXAMS table, we could find the average 

mark obtained by the students by: 

SELECT AVG (MARK) 

FROM EXAMS ; 
 

 
AVG(MARK) 

--------- 

55 
 

 

SQL Tips 

SQL Server allows the COMPUTE clause which is used to calculate subtotals of subtotals. 
 

 
This value is not very informative as the exams were sat by students of all abilit ies. It 

would be more meaningful to get the average mark for each student. This can be 

obtained by using the GROUP BY clause: 
 

 
SELECT STUDENT_NO, AVG(MARK) 

FROM EXAMS 

GROUP BY STUDENT_NO ; 

 
STUDENT_NO AVG(MARK) 

----------- ---------- 

1 62 

2 52 

3 70 

4 42 

5 55 

6 74 

7 45 

8 62 

 
This query first groups the rows in the EXAMS table by the values in STUDENT_NO. 

The AVG() function then operates on each group. The average values output are thus 

the averages for the exams taken by individual students. 
 

 
Queries using the GROUP BY clause are known as grouped queries. All the rules for 

using the ANSI/ ISO functions that we have looked at also apply to grouped queries. 



I TECH COMPUTER EDUCATION       SQL 

75 

 

 

 
 

The only difference being that in grouped queries, the DBMS applies the functions to 

each group individually rather than to the column as a whole. You can also get the same 

results by running several queries with a WHERE clause. For example, to find the 

average mark for a student: 

SELECT STUDENT_NO, AVG(MARK) 

FROM EXAMS 

WHERE STUDENT_NO = 1 ; 
 

 
STUDENT_NO AVG(MARK) 

----------- --------- 

1 65 
 

 
By changing the 1 value in the predicate, we could calculate the average for different 

students. 
 

 
GROUP BY can be used with multiple fields. For example, in the SUBJECTS table, to find 

the highest pass mark for each department/credits combination: 
 

 
SELECT SUB_NAME, DEPT_NO, CREDITS, MAX(PASS) 

FROM SUBJECTS 

GROUP BY DEPT_NO, CREDITS ; 

SUB_NAME DEPT_NO CREDITS MAX(PASS) 

---------------- ------- ------- --------- 

Engineering Drwg 1 1 71 

Mathematics 1 2 65 

Electronics 1 3 71 

English Lit 2 1 60 

Basic Accounts 3 1 67 

Marketing 3 2 56 

Industrial Law 4 2 52 

Organic Chemistry 5 3 57 

Anatomy 6 1 74 

Physiology 6 3 78 

 
SQL Tips 

SQL Server's COMPUTE clause produces non-table results which are, needless to 

say, highly non-standard. 



I TECH COMPUTER EDUCATION       SQL 

76 

 

 

 
 

Eliminating groups of data: The HAVING clause. 
You cannot use aggregate functions in the WHERE clause of a SELECT statement. This 

means that you cannot use WHERE to selectively eliminate data that does not interest 

you from the results of aggregate queries. For example, in the query that we used to 

find the average mark for each student, if we are only interested in averages that are 

above 56%, then SQL won't let you use the following query because it uses AVG() in the 

WHERE clause: 
 

 
SELECT STUDENT_NO, AVG(MARK) 

FROM EXAMS 

WHERE AVG(MARK) > 56 

GROUP BY STUDENT_NO ; 

Error 67: Aggregate function used in WHERE. 
 

 
The HAVING clause performs a similar function to WHERE in that it eliminates groups 

from the results table. Thus to list only those students where the average is above 56%: 
 

 
SELECT STUDENT_NO, AVG (MARK) 

FROM EXAMS 

GROUP BY STUDENT_NO 

HAVING AVG(MARK) > 56 ; 
 

 
STUDENT_NO AVG (MARK) 

----------- ---------- 

1 62 

3 70 

6 74 

8 62 
 

 

The field referenced by HAVING can not have more than one value for each group. This 

means that in practice HAVING can only reference aggregate functions and columns that 

are used in GROUP BY. 



I TECH COMPUTER EDUCATION       SQL 

77 

 

 

 
 

"Retrieving data from multiple tables": 

SQL joins. 

So far, we've been looking at queries that retrieve data from single table at a time. 

Single table queries are useful but they do not exploit the full power of the SQL 

language. SQL is a relational database query language and as such, one of it's most 

important features is it's ability to retrieve information from several different related 

tables. In relational database terms, this process is called a join. The tables to be joined 

are named in the FROM clause of the SELECT with each table name separated by a 

comma. The relationships between the tables in a join are defined by the predicate in 

the WHERE clause. The predicate can refer to any column from the joined tables to form 

the relations. For example, to list the names of all the lecturers and the subjects that 

they teach: 
 

 
SELECT LECTURERS.SURNAME, SUBJECTS.SUB_NAME 

FROM LECTURERS, SUBJECTS 

WHERE LECTURERS.DEPT_NO = SUBJECTS.DEPT_NO ; 
 

 
LECTURERS.SURNAME SUBJECTS.SUB_NAME 

------------------ --------------------- 

Jones Electronics 

Jones Engineering Drwg 

Jones Mathematics 

Scrivens Marketing 

Scrivens Basic Accounts 

Nizamuddin Marketing 

Nizamuddin Basic Accounts 

Campbell Organic Chemistry 

Ramanujan Industrial Law 

Finley Industrial Law 
 

 
Of course, this join assumes that all the lecturers are multi-skilled in that each is able to 

teach all the subjects in one particular department. Notice the column naming 

convention we have used The column names in this query are prefixed by the name of 

the table that the column is part of. If all the columns in the joined tables had unique 

names, then the table prefix would not have been required. In our university example 

though, there is a column called DEPT_NO in both the LECTURERS and the SUBJECTS 

tables. In this case we must use LECTURERS.DEPT_NO and SUBJECTS.DEPT_NO to 



I TECH COMPUTER EDUCATION       SQL 

78 

 

 

 
 

distinguish between the columns. Generally, it is good to get into the habit of using the 

table name prefix to specify columns. As your queries get more and more complex, it 

may not always be clear to the reader which column you mean if the table prefix is not 

used. 
 

 
In the last query we did not have to tell SQL how to retrieve the data from the tables, 

instead, we merely specified what data we wanted to see. The actual tables themselves 

might have been stored on disks located at different sites. SQL shields the user from 

these technicalities in that you do not have to know how to get at the data or even 

where it is. You only have to specify the data to get at. When processing a query with a 

join, SQL looks at all the possible combination of rows from the tables in the join and 

uses the criteria defined in the predicate to add or omit the rows from the results table. 
 

 
The steps involved in processing this query are shown in Figure. 

 

 
SURNAME SUB_NAME 

------- -------- 

Jones Mathematics-----------> Add to Results 

Jones English Lit 

Jones Engineering Drwg-----> Add to Results 

Jones Basic Accounts 

.. .. 

.. .. 

Jones Electronics--------------> Add to Results 

Jones Marketing 

Scrivens Mathematics 

Scrivens English Lit 

.. .. 

.. .. 

Scrivens Marketing--------------> Add to Results 

.. .. 

.. .. 

Finley Marketing 

---------->   = The predicate is true for this row combination. 
 

 
1. Construct a list of every possible combination of rows from the LECTURERS and the 

SUBJECTS table. 



I TECH COMPUTER EDUCATION       SQL 

79 

 

 

 
 

2. Check to see if the predicate is true for each combination of rows. ie. 

if LECTURERS.DEPT_NO = SUBJECTS.DEPT_NO. 
 

 
3. If the predicate is true, then add the LECTURERS.SURNAME and the 

SUBJECTS.SUB_NAME value for the row to the results table. 
 

 
4. When all the combination rows have been checked, display the results table. 

 

 
We saw in the simple query, how we can use the asterisk character to mean "all the 

columns". This also applies to queries involving table joins. The following query lists all 

the columns of the joined tables: 
 

 
SELECT * 

FROM LECTURERS, SUBJECTS 

WHERE LECTURERS.DEPT_NO = SUBJECTS.DEPT_NO ; 

 
SURNAME INITL LECT_NO DEPT_NO SUB_NO GRADE PAY JOINED 

------- ----- -------- ------ ------ ----- --- ------ 

Jones R A 1 1 2 E 24000 03-25-1990 

Jones R A 1 1 2 E 24000 03-25-1990 

Jones R A 1 1 2 E 24000 03-25-1990 

Scrivens T R 2 3 1 D 31800 09-30-1986 

Scrivens T R 2 3 1 D 31800 09-30-1986 

Nizamuddin W M 3 3 4 A 86790 05-26-1969 

Nizamuddin W M 3 3 4 A 86790 05-26-1969 

Campbell J G 4 5 3 C 43570 02-23-1980 

Ramanujan S 5 4 5 C 40900 01-01-1985 

 
The asterisk causes all the columns of both joined tables to be listed but since the 

screen is only 80 columns wide, only those columns that fit  on the screen are shown in 

the above example. The asterisk is not usually used as it retrieves too much irrelevant 

information. When joining tables, we are only interested in columns that convey useful 

information that is directly related to the query. 
 

 
The last query established a join between the LECTURERS table and the SUBJECTS table 

through the use of columns which have the same data type in both tables, ie. The 

LECTURERS.DEPT_NO and the SUBJECTS.DEPT_NO columns. In relational databases, 



I TECH COMPUTER EDUCATION       SQL 

80 

 

 

 
 

certain linkages are defined when the tables are first created, the primary key/ foreign 

key relationships for example. Joins can easily use these "natural" relationships to 

extract data from tables. For example, the DEPT_NO column is the primary key in the 

DEPARTMENTS table and a foreign key in the SUBJECTS table which refers to 

DEPARTMENTS. So we can join these two tables using this column: 
 

 
SELECT SUBJECTS.SUB_NAME, DEPARTMENTS.DEPT_NAME 

FROM SUBJECTS, DEPARTMENTS 

WHERE SUBJECTS.DEPT_NO = DEPARTMENTS.DEPT_NO ; 
 

 
SUBJECTS.SUB_NAME DEPARTMENTS.DEPT_NAME 

--------------------- --------------------- 

Mathematics Engineering 

English Lit Arts & Humanities 

Engineering Drwg Engineering 

Basic Accounts Management Studies 

Industrial Law   Industrial Law 

Organic Chemistry   Physical Sciences 

Physiology Medicine 

Anatomy Medicine Electronics

 Engineering 

Marketing Management Studies 
 

 
Each subject is listed along with the department that offers it. Notice that we did not 

specify the DEPT_NO field in the SELECT list. We only used DEPT_NO in the predicate to 

from a link between the two tables. In practice, primary and foreign key columns 

seldom appear in the results table because they are often just sequential numbers or a 

combination of numbers and letters that do not mean very much to the reader. The 

associated columns in the record that the key identifies convey far more information eg. 

the SURNAME, DEPT_NAME, BUDGET etc. 
 

 
You can also extend the join to more than two tables. For example, If we modify the 

previous query to include the names of the lecturers that teach the course, we would be 

joining three tables: 
 

 
SELECT SUBJECTS.SUB_NAME, DEPARTMENTS.DEPT_NAME, LECTURERS.SURNAME 

FROM SUBJECTS, DEPARTMENTS, LECTURERS 



I TECH COMPUTER EDUCATION       SQL 

81 

 

 

 
 

WHERE SUBJECTS.DEPT_NO = DEPARTMENTS.DEPT_NO 
 

 
SUBJECTS.SUB_NAME DEPARTMENTS.DEPT_NAME LECTURERS.SURNAME 

--------------------  ---------------------- ----------------- 

Mathematics Engineering Jones 

Engineering Drwg Engineering Jones 

Basic Accounts Management Studies Nizamuddin 

Basic Accounts Management Studies Scrivens 

Industrial Law Industrial Law Finley 

Industrial Law Industrial Law Ramanujan 

Organic Chemistry Physical Sciences Campbell 

Electronics Engineering Jones 

Marketing Management Studies Nizamuddin 

Marketing Management Studies Scrivens 

 
Notice that certain subjects (such as Basic Accounts) appear twice in the results with 

different lecturer names. This is because lecturers who are in the same department such 

as Nizamuddin and Scrivens have the same DEPT_NO value and both match the 

SUBJECTS.DEPT_NO value for that subject row. So SQL lists the subject twice with 

different lecturers. 
 

 
When you join tables with a predicate such as LECTURERS.DEPT_NO = 

SUBJECTS.DEPT_NO, NULL values for the DEPT_NO column (in both tables) will be 

omitted from the results. A lot of commercial SQL implementations use a non-ANSI/ ISO 

standard technique called the outer join to include NULLs in the results. This is beyond 

the scope of this book and we will not be discussing it. 
 

 

SQL Tips 

The IBM SQL products only support the inner join but many implementations including 

SQL Server, Oracle and SQLBase support both the inner and the outer joins. 
 

 

Classification of joins. 
SQL joins are classified according to the type of predicate that they use. All the joins that 

have been described so far have used the equivalence operator (the = sign) in the 

predicate eg. SUBJECTS.DEPT_NO = DEPARTMENTS.DEPT_NO. This type of join is called 

the equijoin and is the one most commonly used. Any of the other comparison 

operators can also be used in defining the predicate, and will lead to non-equijoins. 



I TECH COMPUTER EDUCATION       SQL 

82 

 

 

 
 

SQL Tips 
The ANSI/ ISO standard specifies only the inner join. 

 

 

"Joining a table to itself":  

The self-join. 

SQL's concept of joining two or more tables also applies to joining two copies of the 

same table. At first, this may sound strange. Surely the idea behind the join is to extract 

information from related but different tables. What information can we extract by 

joining two copies of the same table? Well, joining a table to itself, called the self-join 

enables us to perform queries that exploit relationships within the table itself. Data 

retrieved by self-joins cannot be obtained by any other type of query. 
 

 
The rules governing the self-join are the same as for any other type of join. In fact if we 

think about it, a self-join is just like any other join but are where all the joined tables are 

identical. This last fact does present some problems as we shall see. 
 

 

As an example, consider the LECTURERS table. If we wanted to list all pairs of lecturers 

who work in the same department (ie. have the same DEPT_NO column value), we 

could only do this by using a self-join query: 
 

 
SELECT LECTURERS.SURNAME, LECTURERS.SURNAME 

FROM LECTURERS, LECTURERS 

WHERE DEPT_NO = DEPT_NO ; 
 

 
LECTURERS.SURNAME LECTURERS.SURNAME 

------------------ ----------------- 

Jones Jones 
 

 
Wait a minute. Let's look at this query again. Although it is syntactically correct, it doesn't 

make sense. It is clear that the query is trying to join two copies of the LECTURERS table, 

but it's not clear which DEPT_NO column is from which table. In the last section, we 

learnt that when you join two tables where column names are repeated, you had to use 

the table name prefix to fully identify each column. When using the self- join, we are 

faced with the added problem of repeated table names. 

Fortunately, SQL allows us to use aliases or temporary names for tables. If we re-write 

the query using aliases, it will become obvious what aliases are and how to use them: 



I TECH COMPUTER EDUCATION       SQL 

83 

 

 

 
 

SELECT F.SURNAME, S.SURNAME, F.DEPT_NO 

FROM LECTURERS F, LECTURERS S 

WHERE F.DEPT_NO = S.DEPT_NO ; 

 
F.SURNAME S.SURNAME F.DEPT_NO 

--------------- ---------------- --------- 

Jones Jones 1 

Scrivens Nizamuddin 3 

Scrivens Scrivens 3 

Nizamuddin Nizamuddin 3 

Nizamuddin Scrivens 3 

Campbell Campbell 5 

Ramanujan Finley 4 

Ramanujan Ramanujan 4 

Finley Finley 4 

Finley Ramanujan 4 

 
When executing this query, the DBMS treats the aliases as two distinct tables and joins 

them accordingly. The rows from the joined table are checked against the predicate and 

where F.DEPT_NO = S.DEPT_NO, they are retrieved into the results table. The FROM 

clause of the query tells SQL that the first incarnation of LECTURERS is to be known by 

the alias F and the second incarnation, by the alias S throughout the duration of the 

query. This makes life a lot easier. In the SELECT clause, the SURNAME columns are 

described as F.SURNAME and S.SURNAME. We used the aliases as the table name 

prefixes for these columns because in the self-join, both table names are the same. 
 

 
In the WHERE clause, the alias names are again used as table name prefixes to specify 

the DEPT_NO columns from the first and the second copies of the LECTURERS table. 

SQL allows the use of alias names for tables in all queries, not just self-joins. So for 

example if your database consisted of tables with long names, then you could define 

and use simple aliases to refer to them instead. You must remember though that the 

alias only exists for as along as the query is being executed but most commercial 

implementations allow you to define more permanent aliases for tables called 

synonyms. Oracle for example lets you use the CREATE SYNONYM statement to 

assign a permanent alias to a table. 
 

 
The results of the previous self-join query contain redundant data. For example, the first 



I TECH COMPUTER EDUCATION       SQL 

84 

 

 

 
 

row lists Jones twice. We are only interested in pairs of different lecturers who work in 

the same department. The first row only lists one lecturer, Jones as being in department 

1. To eliminate such redundancy, we need to add an extra condition to the WHERE 

clause: 

SELECT F.SURNAME, S.SURNAME, F.DEPT_NO 

FROM LECTURERS F, LECTURERS S 

WHERE F.DEPT_NO = S.DEPT_NO 

AND F.SURNAME <> S.SURNAME ; 

 
F.SURNAME S.SURNAME F.DEPT_NO 

--------------- --------------- --------- 

Scrivens Nizamuddin 3 

Nizamuddin Scrivens 3 

Ramanujan Finley 4 

Finley Ramanujan 4 

 
Although this last condition gets rid of some of the redundant rows, the remaining pairs 

of values are still listed twice. eg. Scrivens with Nizamuddin in one row, and Nizamuddin 

with Scrivens in another. Such repetition is usually eliminated by using > or < instead of 

<> in the extra condition of the WHERE clause: 
 

 
SELECT F.SURNAME, S.SURNAME, F.DEPT_NO 

FROM LECTURERS F, LECTURERS S 

WHERE F.DEPT_NO = S.DEPT_NO 

AND F.SURNAME > S.SURNAME ; 

 
F.SURNAME S.SURNAME F.DEPT_NO 

--------------- ---------------- --------- 

Scrivens Nizamuddin 3 

Ramanujan Finley 4 

 

"Nested SELECT statements": 

The subquery. 

We've seen how queries work and we've seen how predicates work. In this section we 

will be looking at how to use queries in the predicates of other queries. Recall that a 

predicate defines a condition which is tested against the rows of the table(s) from which 

data is to be retrieved. All those rows which make the predicate condition true are 



I TECH COMPUTER EDUCATION       SQL 

85 

 

 

 
 

retrieved in the results. A subquery can also be used to provide one or more of the 

values that are used in the predicate. For example, consider this situation, which is quite 

common in live SQL databases. We want to look at the records of all the exams taken by 

Phil J M A Ayton. Although we know the student's full name, we do not know his 

student number. This is where the subquery comes in: 
 

 
SELECT * 

FROM EXAMS 

WHERE STUDENT_NO = 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE SURNAME = 'Ayton') ; 

 
SUB_NO STUDENT_NO MARK DATE_TAKEN 

--------- ----------- ----- ----------- 

2 3 89 06-08-1984 

2 3 51 05-11-1984 

 
The DBMS executes the subquery first. This generates a single value of 3 for the 

STUDENT_NO column from the row where SURNAME is equal to 'Ayton'. The DBMS 

then evaluates the full query as usual. The predicate being set to STUDENT_NO = 3. 

When using the equivalence operator (=) in the predicate, you must make sure that the 

subquery retrieves exactly one value. This means that the subquery must select only 

one column in the SELECT list and must be phrased so that it retrieves a single row. 
 

 
The column selected by the subquery must also be of the same data type as the 

column it is being compared to in the predicate. If these conditions are not met, then 

SQL will signal an error and the query will be aborted. The following query contains a 

subquery which selects more than one row and SQL rejects it: 
 

 
SELECT * 

FROM EXAMS 

WHERE STUDENT_NO = 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 3) ; 

Error 76: The subquery found more than one value. 



I TECH COMPUTER EDUCATION       SQL 

86 

 

 

 
 

And this variation of the same query selects no rows, and also fails: 

SELECT * 

FROM EXAMS 

WHERE STUDENT_NO = 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 365) ; 

Error 75: The subquery did not find any values. 
 

 
Aggregate functions are allowed in the subquery as long as they do not use the GROUP 

BY or the HAVING clauses. The reason for this is that aggregate functions on their own 

operate on the whole column and produce a single value as output. When used with 

GROUP BY and HAVING, aggregate functions operate on subsets of values in the column 

and produce one value per group as output. Even if you phrased the subquery with 

GROUP BY so that the HAVING clause retrieves only one value as output, the query will 

still be rejected by most SQL systems. You can usually get round this restriction by 

judicious use of the WHERE clause in the subquery. Let's look at an example of a 

subquery which uses an aggregate function to get the names of those lecturers who 

earn less than the average pay for all the lecturers: 
 

 
SELECT SURNAME, PAY 

FROM LECTURERS 

WHERE PAY < 

(SELECT AVG(PAY) 

FROM LECTURERS) ; 
 

 
SURNAME PAY 

---------------- ------- 

Nizamuddin 86790 

Campbell 43570 
 

 
The ANSI/ ISO standard requires that the format of the predicate with subquery cannot 

change. The subquery always appear after the comparison operator and cannot appear 

before. Thus, we cannot re-arrange the previous query to read: 
 

 
SELECT * 

FROM EXAMS 



I TECH COMPUTER EDUCATION       SQL 

87 

 

 

 
 

WHERE (SELECT STUDENT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 3) 

= STUDENT_NO ; 

Error 36: Invalid Syntax. 
 

 
This means that you sometimes have to reverse the logic of the statement without 

changing the meaning to convert it into a form that SQL can accept. So far, we've have 

looked at using subqueries in predicates with comparison operators (=, <>, >, <, >=, <=). 

These queries necessarily required the subquery to output a single value. You cannot 

say DEPT_NO = 12, 14, 7, 9 for example as it doesn't make sense. 
 

 
To use subqueries which return multiple values, you must use the IN operator. For 

example, to look at all the exams taken by students in department number 3: 
 

 
SELECT * 

FROM EXAMS 

WHERE STUDENT_NO IN 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 3) ; 

 
SUB_NO STUDENT_NO MARK DATE_TAKEN 

-------- ---------- ---- ---------- 

2 3 89 06-08-1984 

2 3 51 05-11-1984 

5 8 52 05-20-1984 

 
The previous version of this query failed because the subquery retrieved more than one 

row. The difference here is that the equivalence operator (=) has been replaced by the 

IN operator. IN looks for a matching value from the rows that are retrieved by the 

subquery. Although IN can deal with multiple values retrieved by the subquery, the 

values must all come from the same field. This means that you must still specify a single 

column in the subquery's SELECT clause and the column must have the same data type 

as the value that it is being compared to. We can reverse the logic of IN with NOT IN. For 

example, in the previous query, we can retrieve the exams taken by students who are 

not in department number 3 by using NOT IN: 



I TECH COMPUTER EDUCATION       SQL 

88 

 

 

 
 

SELECT * 

FROM EXAMS 

WHERE STUDENT_NO NOT IN 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 3) ; 

 
SUB_NO STUDENT_NO MARK DATE_TAKEN 

-------- ----------- ---- ---------- 

1 1 76 05-23-1984 

9 1 42 05-20-1984 

3 1 67 05-15-1984 

2 2 52 06-05-1984 

4 4 34 05-11-1984 

10 4 49 06-26-1984 

5 5 62 05-03-1984 

5 6 70 05-17-1984 

5 7 36 05-23-1984 

6 9 67 05-15-1984 

6 10 82 06-05-1984 

6 11 73 06-08-1984 

7 12 27 05-11-1984 

8 12 56 05-11-1984 

8 13 67 06-26-1984 

7 13 63 05-03-1984 

 
Because IN uses a set of values to match against, it can also be used in place of the 

equivalence operator (=). This means that we can rephrase one of our earlier queries as: 
 

 
SELECT * 

FROM EXAMS 

WHERE STUDENT_NO IN 

(SELECT STUDENT_NO 

FROM STUDENTS 

WHERE SURNAME = 'Ayton') ; 



I TECH COMPUTER EDUCATION       SQL 

89 

 

 

 
 

SUB_NO STUDENT_NO MARK DATE_TAKEN 

-------- ---------- ----- --------- 

2 3 89 06-08-1984 

2 3 51 05-11-1984 

 
Here, we've simply replaced the equivalence operator (=) with IN but the query still 

retrieves exactly the same rows. You might well ask why bother with the equivalence 

operator at all? Why not use the IN operator all the time? The answer is we could, but 

the equivalence operator is very useful in highlighting cases where potential errors 

could affect the results. In the above query for example, if there were two students with 

the surname Ayton, then the query with IN would have retrieved the exam results for 

both of them. Looking at the results, you would mistakenly think that these exams were 

taken by the same person. The version of the query, which used the equivalence 

operator, would have simply failed if the subquery retrieved two rows for Ayton. 
 

 
When we were discussing aggregate functions, remember we said that the value 

supplied to the HAVING clause can also be generated by a subquery. Let's look at an 

example where this is done: 
 

 
SELECT SUB_NO, SUB_NAME, AVG(MARK) 

FROM EXAMS 

GROUP BY SUB_NO 

HAVING SUB_NO = 

(SELECT SUB_NO 

FROM SUBJECTS 

WHERE PASS = 60) ; 

 
SUB_NO SUB_NAME AVG(MARK) 

------ -------- --------- 

2 English Lit 64 

 
This query calculates the average mark obtained by students in the department whose 

budget is 2,510,000. 
 

 
The nested queries that we've used so far have all been second level. The ANSI/ ISO 

standard itself does not place any restriction on the number of levels of nesting that you 

can have, but practical constraints limit nesting to quite a low number. Higher levels of 



I TECH COMPUTER EDUCATION       SQL 

90 

 

 

 
 

nesting require far greater processing and it becomes difficult for the reader to follow 

what the query is trying to do. Many implementations of SQL restrict subquery nesting 

to a low value. You can usually phrase all your queries to fit this level of nesting. 
 

 

"Linked SELECT statements": 

The correlated sub query. 

We have seen how you can link two or more tables in a single query by using the SQL join 

operation. In this section, we will look at the correlated subquery. This is another method 

of extracting data from different tables by linking them through the subquery. A 

subquery becomes a correlated subquery when it refers to columns from the main 

query's table. As you will see, correlated subqueries are similar to joins in that they both 

involve comparing each row of a table against every row of another table. The similarity 

does not end there. Just as we can join two copies of the same table, so we can also 

correlate a table to itself. 
 

 
An advanced warning. The concepts of correlated subqueries are probably the most 

difficult in SQL for a beginner to understand. Don't worry too much if you find this 

section a bit confusing on the first reading. As we've said before, the best teacher is 

experience. Try the queries given for yourself, on your own SQL system. Vary the query 

to see the different results and you will soon grasp the ideas behind correlated 

subqueries by seeing and by doing. 
 

 
So, what does a correlated subquery look like? Well, here's one: 

SELECT * 

FROM EXAMS 

WHERE SUB_NO IN 

(SELECT SUB_NO 

FROM SUBJECTS 

WHERE SUBJECTS.PASS <= EXAMS.MARK); 

SUB_NO STUDENT_NO MARK DATE_TAKEN 

------ ---------- ---- ---------- 

1 1 76 05-23-1984 

2 3 89 06-08-1984 

5 5 62 05-03-1984 

5 6 70 05-17-1984 

5 8 52 05-20-1984 

6 9 67 05-15-1984 



I TECH COMPUTER EDUCATION       SQL 

91 

 

 

 
 

6 10 82 06-05-1984 

6 11 73 06-08-1984 

 
This query retrieves rows from the EXAMS table for those students who pass in the 

subject. The EXAMS table is in the outer query and the STUDENTS table in the correlated 

subquery (some texts refer to the correlated subquery as the interblock reference). The 

subquery uses the phrase WHERE SUBJECTS.PASS <= EXAMS.MARK. This is the same as 

saying "where the student's mark is equal to more than the pass mark for the subject" 

The use of the column from the table in the outer query, the EXAMS.MARK column, in 

the subquery is known as an outer reference. 
 

 
Although this query may be less efficient because of the interblock reference and can 

probably be better expressed without using it, there are many SQL queries that cannot 

be performed without the correlated subquery. The correlated subquery is executed 

once for each row in the outer query. Since the value from the outer query changes for 

each row, the inner query results will be different for each outer query row. The current 

outer query row for which the subquery is executed is called the candidate row. Figure 

shows the steps involved in executing this query. 
 

 
As we said earlier the correlated subquery can also refer to two incarnations of the 

same table (cf. the self-join). For example: 
 

 
SELECT DISTINCT A.DEPT_NO 

FROM LECTURERS A 

WHERE A.DEPT_NO IN 

(SELECT DEPT_NO 

FROM LECTURERS B 

WHERE B.SURNAME <> A.SURNAME) ; 

A.DEPT_NO 

--------- 

3 

4 
 

 
This query lists the department numbers for the departments that have more than one 

lecturer on staff. SQL runs the subquery once for each A.DEPT_NO (each outer query 

row). The subquery checks if there is another lecturer who is also in the same 

department. (it uses the SURNAME field to differentiate between them) This query 



I TECH COMPUTER EDUCATION       SQL 

92 

 

 

 
 

illustrates the importance of the correlated subquery. It is impossible to perform this 

type of query without use of the correlated subquery. 
 

 
SELECT *  FROM EXAMS WHERE SUB_NO IN (SELECT SUB_NO FROM SUBJECTS WHERE 

SUBJECTS.PASS <= EXAMS.MARK) ; 

/ | \  

|  

----- This is the outer reference. 

 
SUB_NO STUDENT_NO MARK DATE_TAKEN  

------ ---------- ---- ---------- 

1 1 76 23-MAY-1984 ------ 

9 1 42 20-MAY-1984 |  

~~ ~~ ~~ ~~~~ |  Candidate Row 

~~ ~~ ~~ ~~~~ |  

\ |/  

The subquery is executed using 

the value of 76 for the outer 

reference. 

SUB_NO The subquery builds a set 

------ of values for which the 

1 predicate SUBJECTS.PASS <= 76 

2 is true. 

3 |  

4 |  

5 <---------------------------------------------- 

6 

8 

9 

10 

SUB_NO STUDENT_NO MARK DATE_TAKEN 

------ ---------- ---- ---------- 

1  1 76 23-MAY-1984 <-----  Test the predicate of the 

main query against the intermediate set of SUB_NO values. It is true, so this row 

is added to the results table. 



I TECH COMPUTER EDUCATION       SQL 

93 

 

 

 
 

SUB_NO STUDENT_NO MARK DATE_TAKEN  

------ ---------- ---- ----------  

1 1 76 23-MAY-1984  

2 3 89 08-JUN-1984 <--- The subquery is run for 

5 5 62 03-MAY-1984 each row of the outer 

5 6 70 17-MAY-1984 table in turn, and this 

5 8 52 20-MAY-1984 produces the full 

6 9 67 15-MAY-1984 results table. 

6 10 82 05-JUN-1984  

6 11 73 08-JUN-1984  

 

"Does the subquery retrieve values": 
The EXISTS operator. 

The EXISTS operator is used in the predicate of a query just like the IN operator. EXISTS 

must always have a subquery as its argument and it returns true if the subquery 

retrieves any values. EXISTS returns false if the subquery does not retrieve any values. 

As a simplified example consider the following query. It retrieves all the rows in the 

SUBJECTS table only if there is a subject which has a pass mark of 75% or more: 
 

 
SELECT * 

FROM SUBJECTS 

WHERE EXISTS 

(SELECT * 

FROM SUBJECTS 

WHERE PASS >= 75) ; 

 
SUB_NO SUB_NAME DEPT_NO CREDITS PASS 

------- --------- -------- -------- ----- 

7 Physiology 6 3 78 

 
Granted that this query does not make too much sense in the real world, but it does 

serve to illustrate the use of EXISTS. SQL executes the subquery and finds that there is 

only one row, the row for Physiology, for which the pass mark is greater than 75%. 

Because the subquery found a row, EXISTS evaluates to true for all rows in the outer 

table. The subquery does not make any reference to the outer table columns so it is only 

run once and not once for each row of the sub-query. The query will thus retrieve all the 

rows from the SUBJECTS table. Notice that the subquery uses the asterisk in the SELECT 



I TECH COMPUTER EDUCATION       SQL 

94 

 

 

 
 

clause. This is because EXISTS only checks if output is produced by the subquery. It 

doesn't care what actual columns are selected or returned. 
 

 

EXISTS can also be used with correlated subqueries. With these, the EXISTS clause is 

evaluated separately for each row of the outer query table. EXISTS will return true or 

false depending on the value of each row in the outer query table unlike in the previous 

example where the subquery was only evaluated once. The following query uses a 

correlated subquery with EXISTS. It lists the student number for those students who 

have sat more than one exam: 
 

 
SELECT DISTINCT STUDENT_NO 

FROM EXAMS A 

WHERE EXISTS 

(SELECT * 

FROM EXAMS B 

WHERE B.STUDENT_NO = A.STUDENT_NO 

AND B.SUB_NO <> A.SUB_NO) ; 
 

 
STUDENT_NO 

---------- 

1 

4 

12 

13 
 

 
For each outer query row, the subquery searches the EXAMS table to find rows where 

the student numbers in both the outer and the inner query are the same. The AND 

clause eliminates those cases where the student sat more than one exam in the same 

subject. The DISTINCT keyword is used in the outer query because without it, the query 

would have listed each student number more than once (once for each exam that they 

took). 
 

 
The EXISTS examples that we have seen so far have been simple queries with 

subqueries. EXISTS can also be applied to queries where the outer query joins tables. 

For example, if we wanted to extend the previous query so that it displayed the 

student's name as well as the student number, we would have to use a query which 

joined the EXAMS and the STUDENTS tables: 



I TECH COMPUTER EDUCATION       SQL 

95 

 

 

 
 

SELECT DISTINCT A.STUDENT_NO, B.SURNAME 

FROM EXAMS A, STUDENTS B 

WHERE EXISTS 

(SELECT * 

FROM EXAMS C 

WHERE C.STUDENT_NO = A.STUDENT_NO 

AND C.STUDENT_NO = B.STUDENT_NO 

AND C.SUB_NO <> A.SUB_NO) ; 
 

 
A.STUDENT_NO B.SURNAME 

------------ ----------------- 

1 Duke 

4 Patel 

12 Hung-Sun 

13 Middleton 
 

 
The outer query joins the EXAMS and the STUDENTS tables. The extra AND clause (AND 

C.STUDENT_NO = B.STUDENT_NO) in the inner query ensures that the subquery only 

retrieves rows where the STUDENT_NO value from the STUDENTS table matches the 

STUDENT_NO value from the EXAMS table. This in turn ensures that the right SURNAME 

value is listed against each STUDENT_NO value in the results table. 
 

 
The meaning of EXISTS is reversed by adding the NOT boolean operator. Thus the 

following query lists the student numbers of those students who sat only one exam: 
 

 
SELECT DISTINCT STUDENT_NO 

FROM EXAMS A 

WHERE NOT EXISTS 

(SELECT * 

FROM EXAMS B 

WHERE B.STUDENT_NO = A.STUDENT_NO 

AND B.SUB_NO <> A.SUB_NO) ; 
 

 
STUDENT_NO 

---------- 

2 

3 



I TECH COMPUTER EDUCATION       SQL 

96 

 

 

 
 

5 

6 

7 

8 

9 

10 

11 
 
 

"Two more subquery operators": 

The ANY and ALL operators. 

We have looked at the IN operator and we've also looked at the EXISTS operator. Now 

let's examine the last two specialized operators used specifically with subqueries. The 

ANY (also called SOME which is synonymous with ANY) and ALL operators differ from 

EXISTS in that they can be used with relational operators. 
 

 

SQL Tips 

The ANSI/ ISO standard specifies that SOME and ANY can be used interchangeably. 
 

 
The ANY operator evaluates to true if any of the values retrieved by the subquery equal 

the outer query column value used in the predicate. For example the following query 

retrieves the names of the lecturers who work in a department which has a budget of 

more than 3,000,000: 
 

 
SELECT SURNAME, INITL, DEPT_NO 

FROM LECTURERS A 

WHERE A.DEPT_NO = ANY 
 

 
(SELECT B.DEPT_NO 

FROM DEPARTMENTS B 

WHERE BUDGET > 3000000) ; 

 
SURNAME INITL DEPT_NO 

--------------- ----- ------- 

Jones R A 1 

As with the IN and the EXISTS operators, the ANY clause also requires a subquery which 

must be an entire SELECT statement. In this example the result of the subquery is a list 



I TECH COMPUTER EDUCATION       SQL 

97 

 

 

 
 

of B.DEPT_NO values. SQL then tests if the value of A.DEPT_NO for the current row is 

equal to ANY of the values retrieved by the sub-query. If it is, then the = ANY clause 

returns true. 
 

 

The = ANY phrase produces the same results as the IN operator. As well as =, ANY can 

also be used with the other valid SQL comparison operator (=, <, <=, >, >=, <>). We could 

have used > in the previous query: 
 

 
SELECT SURNAME, INITL, DEPT_NO 

FROM LECTURERS A 

WHERE A.DEPT_NO > ANY 

(SELECT B.DEPT_NO 

FROM DEPARTMENTS B 

WHERE BUDGET > 3000000) ; 

 
SURNAME INITL DEPT_NO 

--------------- ----- ------- 

Scrivens T R 3 

Nizamuddin W M 3 

Campbell J G 5 

Ramanujan S 4 

Finley G Y 4 

 
At first you would think that this query would also retrieve the records of those lecturers 

who work in departments with budgets more than 3,000,000. Closer examination revels 

that the query actually retrieves the rows of those lecturers who work in a department 

which has a department number more than 1. The row for Jones has been omitted as he 

works in a department where the department number equals 1. As before, the subquery 

selects the DEPT_NO values for departments with a budget of more than 3,000,000, ie. 

1, 5 and 6. The outer query predicate returns true for those rows where the A.DEPT_NO 

value is greater than any one of 1, 5, 6. This is true for all the lecturers except Jones. In 

general, > ANY means greater than the smallest value in the list produced by the 

subquery, and < ANY means less than the largest value produced by the subquery. 
 

 
Note that ANSI/ ISO SQL allows you to use the SOME keyword in place of ANY. They both 

produce exactly the same results. Thus the previous query could have been written as: 



I TECH COMPUTER EDUCATION       SQL 

98 

 

 

 
 

SELECT SURNAME, INITL, DEPT_NO 

FROM LECTURERS A 

WHERE A.DEPT_NO > SOME 

(SELECT B.DEPT_NO 

FROM DEPARTMENTS B 

WHERE BUDGET > 3000000) ; 

 
SURNAME INITL DEPT_NO 

--------------- ----- -------- 

Scrivens T R 3 

Nizamuddin W M 3 

Campbell J G 5 

Ramanujan S 4 

Finley G Y 4 

 
The versatility of the SQL language means that there is usually more than one way of 

expressing any query. All queries which use the ANY operator for example, can also be 

constructed with the EXISTS operator (the reverse is not true though). The query to list 

lecturers who work in a department with a budget of more than 3,000,000 can thus be 

expressed using EXISTS as: 
 

 
SELECT SURNAME, INITL, DEPT_NO 

FROM LECTURERS A 

WHERE EXISTS 

(SELECT * 

FROM DEPARTMENTS B 

WHERE BUDGET > 3000000 

AND B.DEPT_NO = A.DEPT_NO) ; 

 
SURNAME INITL DEPT_NO 

--------------- ----- ------- 

Jones R A 1 

Campbell J G 5 

 
The EXISTS version of the query is less efficient in terms of the processing it requires. 

The reason for this is that it's correlated subquery must be executed once for each of 

the rows in the outer table. The ANY version of this query only executes the subquery 



I TECH COMPUTER EDUCATION       SQL 

99 

 

 

 
 

once. The values produced by the subquery, are then used for all the rows of the outer 

table. 
 

 
The ALL operator returns true if all the values selected by the subquery meet the 

requirements defined by the predicate. The ALL keyword is used in an SQL query just as 

the ANY keyword. For example, the following query lists the names of those lecturers 

who do not teach Industrial Law: 
 

 
SELECT SURNAME, INITL 

FROM LECTURERS A 

WHERE A.SUB_NO <> ALL 

(SELECT B.SUB_NO 

FROM SUBJECTS B 

WHERE SUB_NAME = 'Industrial Law') ; 
 

 
SURNAME INITL 

--------------- ----- 

Jones R A 

Scrivens T R 

Nizamuddin  W M 

Campbell J G 
 

 
SQL executes the subquery first. This produces a SUB_NO value of 5 for the Industrial 

Law subject. The <> ALL condition matches all the outer table rows where A.SUB_NO is 

not equal to 5. This leaves us with a list of lecturers who do not teach Industrial Law. 

Note that if the subquery had produced more than one value, then the <> ALL would 

have made the predicate true only for those rows where A.SUB_NO is not equal to all 

the subquery values. The equivalence operator (=) is not usually used with ALL because 

= ALL would only make sense if all the values produced by the subquery are identical 

(A.SUB_NO cannot equal 5 and also 8 at the same time). 
 

 
Sometimes, the subquery produces no values. In these cases, SQL sets the ANY operator 

to false for all rows of the outer query, and sets ALL to true for all outer query rows. 

Thus if we wanted to list those lecturers who earn more than all those in department 

number 12: 



I TECH COMPUTER EDUCATION       SQL 

100 

 

 

 
 

SELECT SURNAME, INITL, PAY 

FROM LECTURERS A 

WHERE A.PAY > ALL 

(SELECT PAY 

FROM LECTURERS B 

WHERE DEPT_NO = 12) ; 

 
SURNAME INITL PAY 

--------------- ----- ------- 

Jones R A 24000 

Scrivens T R 31800 

Nizamuddin W M 86790 

Campbell J G 43570 

Ramanujan S 40900 

Finley G Y 34210 

 
As there are no lecturers in department 12, the subquery comes back empty. This means 

that the ALL predicate is true for all rows. Thus the query lists all the lecturers because 

they all earn more then the no-existent lecturers of department 12. Similarly, if we had 

used ANY instead of ALL: 
 

 
SELECT SURNAME, INITL, PAY 

FROM LECTURERS A 

WHERE A.PAY > ANY 

(SELECT PAY 

FROM LECTURERS B 

WHERE DEPT_NO = 12) ; 

No matching records found. 

The ANY predicate is now false for all rows. So this query retrieves no rows. 
 
 

"Combining multiple queries": 
The UNION clause. 

The UNION clause allows you to combine the output of two or more individual queries. 

UNION differs from subqueries in that it is made up of queries that are independent 

from each other. UNION combines the output of these individual SELECTs and lists them 



I TECH COMPUTER EDUCATION       SQL 

101 

 

 

 
 

as part of a single output table. For example, to get a list of all students and lecturers in 

department number 3: 
 

 
SELECT SURNAME, DEPT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 3 

UNION 

SELECT SURNAME, DEPT_NO 

FROM LECTURERS 

WHERE DEPT_NO = 3; 
 

 
SURNAME DEPT_NO 

--------------- ------- 

Ayton 3 

Brown 3 

Mulla 3 

Scrivens 3 

Nizamuddin 3 
 

 
Notice that the output columns don't have column headings. This is because the 

columns values are from two separate tables which may have different headings (in this 

case they don't). Figure shows how SQL executes this query. The UNION is made up of 

two queries, one lists the students in department 3 and the other lists the lecturers. 
 

 

SQL Tips 

Some commercial systems, including SQL Server and dBase IV do not support the UNION 

operation. 
 

 

SURNAME FIRST_NAME D_O_B STUDENT_NO DEPT_NO YEAR 

------- ---------- ----- ---------- ------- ---- 

Duke Fitzroy 11-26-1970 1 4 2 

Al-Essawy Zaid M A 11-26-1970 2 4 2 

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

Layton Hugh 11-16-1971 15 5 1 

Wickes Wendy Y Y W 12-05-1969 16 1 1 

THE STUDENTS TABLE 



I TECH COMPUTER EDUCATION       SQL 

102 

 

 

 
 

SELECT SURNAME, DEPT_NO 

FROM STUDENTS WHERE DEPT_NO = 3 

|  

|  SQL executes the first query and internally stores 

|  the results. 

\ |/  

 
SURNAME DEPT_NO 

------- ------- 

Ayton 3 

Brown 3 

Mulla 3 

Kitson 3 

Grace 3 

Avery 3 

Davis 3 

TABLE A  

 

SURNAME INITL LECT_NO DEPT_NO SUB_N GRADE PAY JOINED 

------- ----- ------- ------- ----- ----- --- ------ 

Jones R A 1 1 2 E 24000 03-25-1990 

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

Finley G Y 6 4 5 D 34210 03-28-1960 

THE LECTURERS TABLE 
 

 
SELECT SURNAME, DEPT_NO 

FROM LECTURERS WHERE DEPT_NO = 3 

|  

|   SQL executes the second query and internally stores 

|   the results. 

\ |/  

|  

SURNAME DEPT_NO 

-------  ------- 

Ayton 3 

Brown 3 



I TECH COMPUTER EDUCATION       SQL 

103 

 

 

 
 

Mulla 3 

Kitson 3 

Grace 3 

Avery 3 

Davis 3 

TABLE B  

 
SQL internally combines results tables A and B and outputs the results as a UNION of 

these tables. 

 
------- ------- 

Ayton 3 

Brown 3 

Mulla 3 

Kitson 3 

Grace 3 

Avery 3 

Davis 3 

Scrivens 3 

Nizamuddin 3 

 
The ANSI/ ISO standard applies some restrictions on the use of the UNION clause. These 

include: 
 

 
- The columns selected by the individual SELECT statements must be compatible. ie. 

each query must select the same number of columns and each corresponding column 

must have the same data type. 
 

 

- If one column is specified as NOT NULL, then the corresponding column in the other 

SELECT statements must also be NOT NULL. 
 

 
- The UNION clause cannot be used in subqueries. 

 

 
- The individual SELECT statements in the UNION must not use aggregate functions. 

 

 
- The individual SELECT statements must not use the ORDER BY clause. 



I TECH COMPUTER EDUCATION       SQL 

104 

 

 

 
 

The UNION will eliminate duplicate rows from the final results table by default. This is 

the opposite of SELECT statements, where duplicate rows are included in the results by 

default. You can instruct SQL to leave the duplicate rows in the results by using UNION 

ALL instead of UNION. 
 

 
Although you cannot use ORDER BY in the individual queries, you can specify ordering 

on the results of the UNION itself. For example, to rephrase the previous query and 

order the results alphabetically by surname: 
 

 
SELECT SURNAME, DEPT_NO 

FROM LECTURERS 

WHERE DEPT_NO = 

(SELECT DEPT_NO 

FROM DEPARTMENTS 

WHERE DEPT_NAME = 'Management Studies') 

UNION 

SELECT SURNAME, DEPT_NO 

FROM STUDENTS 

WHERE DEPT_NO = 

(SELECT DEPT_NO 

FROM DEPARTMENTS 

WHERE DEPT_NAME = 'Management Studies') 

ORDER BY 1 ; 
 

 
SURNAME DEPT_NO 

--------------- ------- 

Ayton 3 

Brown 3 

Mulla 3 

Nizamuddin 3 

Scrivens 3 
 

 
The ORDER BY appears at the end of the UNION and acts on the results produced by it. 

ORDER BY uses a column number to define the ordering sequence instead of a column 

name because the results of a UNION query do not show column names. This query also 

shows us that, we can use subqueries in the individual SELECT statements of the UNION. 



I TECH COMPUTER EDUCATION       SQL 

105 

 

 

 

 

ADDING AND UPDATING DATA 
 
 
SQL allows data to be added to, updated in and deleted from tables by using the INSERT, 

UPDATE and DELETE Data Manipulation Language (DML) commands. ANSI/ ISO SQL 

refers to all these commands generically as the update commands and this sometimes 

causes confusion because UPDATE is also a specific SQL command. In this book, we will 

be using the word UPDATE to refer to the SQL command and update to refer to the 

group of commands. 
 

 
When you use any of the DML commands to manipulate the data in the database, the 

DBMS must be capable of carrying out your request as well as similar requests from 

other users of the system. This means that the DBMS must protect the overall integrity 

of the database at all times, preventing the changes made by one user from interfering 

with those made by other users on the system. 
 

 

"Adding Single Rows at a Time": 

The INSERT command. 

Records are added to tables by using the INSERT command. Essentially, there are two 

variations on this command. First, INSERT statements that add records a row at a time. 

And second, INSERT statements that add several rows at a time. 
 

 
The syntax of the single-row INSERT statement is shown in Figure. For example, to insert 

the first row into the STUDENTS table: 
 

 
INSERT INTO tbl_name 

[ ( col_ c name { , col_name }* ] ) 

VALUES ( value { value }*, ) ; 
 

 
tbl_name 

The name of the table to insert data into. This must have been previously defined with 

the CREATE TABLE command. 
 

 
col_name 

The name of a table column to insert data into. If no column names are mentioned, then 

it is assumed that data is to be INSERTED for all the columns in the table. 



I TECH COMPUTER EDUCATION       SQL 

106 

 

 

 
 

value 

The value to insert into the corresponding table column. CHAR type data must be inside 

single-quotes. The data in the value list must correspond to the column names specified 

in the column list. 
 

 
INSERT INTO STUDENTS 

(SURNAME, FIRST_NAME, D_O_B, STUDENT_NO, DEPT_NO, YEAR) 

VALUES ('Duke', 'Fitzroy', '26-NOV-70', 1, 4, 2); 

1 row successfully inserted 
 

 
Obviously, in order to be able to add data to a table, the table must have already been 

created by using the CREATE TABLE command. The INSERT command does not produce 

any output data. On most interactive SQL systems though, the DBMS tells you if rows 

have been added, and if so, how many. 
 

 
Data can only be INSERTED into tables which the user owns or has INSERT privilege on. 

In practice, what this means is that you must have created the table or the person who 

created it must give you permission to insert data by using the GRANT command. The 

column list is optional in the INSERT statement. If a list of columns is specified, then the 

values list must contain the same number of items and in the same order. The data type 

of each column/value pair must also be compatible. 
 

 
If no column names are mentioned, then it is assumed that data is to be INSERTed for 

all columns. Thus the following is also a valid SQL statement: 
 

 
INSERT INTO STUDENTS 

VALUES ('Al-Essawy', 'Zaid M A', '26-NOV-70', 2, 4, 2); 

1 row successfully inserted. 
 

 
This query also inserts a row into the STUDENTS table, but it does not specify a column 

list. SQL assumes that data is to be added to all the columns in the table. 
 

 
CHAR type data must be inside single-quotes, ' '. The DATE-TIME type is not defined by 

ANSI/ ISO so different SQL vendors have different specifications on how a DATE- TIME 

value must be entered. Usually, it is entered as if it is a CHAR type, eg '01271990' or '27- 

Jan-1990'. 



I TECH COMPUTER EDUCATION       SQL 

107 

 

 

 
 

You can enter NULLs as column values by using the NULL keyword in place of a column 

value. In the SUBJECTS table for instance, if you don't know the credits that are awarded 

for a subject, you could enter NULL for this column: 
 

 
INSERT INTO SUBJECTS 

VALUES  (1, 'Mathematics', 1, NULL, 65 ); 

1 row successfully inserted. 

Columns will also be set to NULL (or the default value if one was defined in the CREATE 

TABLE statement) if they are omitted from the column list. The previous INSERT could 

also have been expressed as: 
 

 
INSERT INTO SUBJECTS (SUB_NO, SUB_NAME, DEPT_NO, PASS) 

VALUES  (1, 'Mathematics', 1, 65 ); 

1 row successfully inserted. 
 

 
The CREDITS column is missing from the column list, so SQL sets the value in this column 

to the default value. As we have not defined a default value for this column, SQL enters 

a NULL for this column. 
 

 

"Adding Multiple Rows at a Time": 

The INSERT with SELECT command. 

The INSERT command can be used to add more than one row at a time to a table if it is 

used in conjunction with an appropriate SQL query. To do this, the VALUES clause of the 

INSERT statement must be replaced with a SELECT statement that retrieves the 

required rows from a second table. As an example, suppose we create a table called 

ELITE_EXAMS which holds those exam results where students have scored 80% or more. 

An easy way of populating this table would be to extract the rows from the EXAMS table 

where the value for the MARK column is 80% or greater. After creating the 

ELITE_EXAMS table, the following query will populate it: 
 

 
INSERT INTO ELITE_EXAMS 

SELECT *  FROM EXAMS 

WHERE MARK >= 80 ; 

2 rows inserted. 



I TECH COMPUTER EDUCATION       SQL 

108 

 

 

 
 

In order for this INSERT to work, the ELITE_EXAMS table must have the same column 

types as the EXAMS table and in the same order. Thus the first two columns of 

ELITE_EXAMS must be INTEGER types with the third column being DECIMAL and the 

fourth DATE. Once it is created and populated, the ELITE_EXAMS table is a database 

entity in its own right. It is not related to the EXAMS table in any way except that it 

shares some of the values of that table. So if the data in EXAMS changes, then SQL does 

not pass the changes to ELITE_EXAMS. The INSERT with SELECT statement can be used 

with column names if you wish to move only selected columns: 
 

 
INSERT INTO ELITE_EXAMS (E_MARK, E_STUDENT) 

SELECT MARK, STUDENT_NO FROM EXAMS 

WHERE MARK >= 80 ; 

2 rows inserted. 
 

 
This statement takes only the MARK and the STUDENT_NO columns from EXAMS. Of 

course, in this case, only the E_MARK and the E_STUDENT columns from ELITE_EXAMS 

will have valid values. SQL will enter NULLs for the other two columns. 
 

 
In this section, we have so far seen how queries are used with the INSERT statement to 

add data that already exists in other tables. The SQL update commands, namely INSERT, 

UPDATE and DELETE, also allow the use of sub-queries as well as queries in targeting 

rows that you are interested in. As an example consider if we created a table called 

LOW_BUDGET which holds the records of those students who study in a department 

with an annual budget of less than 100,000. The data that we need to populate this 

table already exists in the university database. The following INSERT selects qualifying 

rows from the STUDENTS table and adds them to the LOW_BUDGET table: 
 

 
INSERT INTO LOW_BUDGET 

SELECT * 

FROM STUDENTS 

WHERE DEPT_NO IN 

(SELECT DEPT_NO 

FROM DEPARTMENTS 

WHERE BUDGET < 100000) ; 

4 rows inserted. 

The query (along with the sub-query) sifts through the STUDENTS and the 

DEPARTMENTS tables and finds the records of those students where the department 



I TECH COMPUTER EDUCATION       SQL 

109 

 

 

 
 

that they study in has a budget of less than 100000. It is important to note that the 

query (or the sub-query) must not make any reference to the table that INSERT is 

operating on, in our case, LOW_BUDGET. This constraint means that you cannot easily 

perform updates based on information contained in the table that is going to be 

updated. In all such cases, the desired update can be accomplished by using two 

queries. One, a query to get the information from a table and the second to update the 

table based on this information. Apart from this restriction, all the material described in 

the section on queries and sub-queries is also applicable to queries and sub-queries 

used as part on an INSERT statement. 
 

 

"Modifying Data in Rows": 

The UPDATE command. 

The UPDATE command is used to change the existing values of the columns. In it's 

simplest form UPDATE only needs three pieces of information: the name of the table 

where updates are required, the name(s) of the column(s) to update and the value(s) to 

set the column(s) to. You must have guessed by all the (s)'s flying around that UPDATE 

can change the value of more than one column in a single statement. 
 

 
In the LECTURERS table, for example, the following UPDATE will set the salary of all the 

lecturers to 25,000: 

UPDATE LECTURERS 

SET PAY = 25000 ; 

6 rows updated. 
 

 
When updating rows, we usually do not want to use such a wide brush as to change the 

column values of all the rows in the table at once. UPDATE can be qualified with an 

optional WHERE clause which can specify a group of rows to modify. In the LECTURERS 

table for example, if Jones had served long enough to be promoted to grade D seniority, 

we could change his record by: 
 

 
UPDATE LECTURERS 

SET GRADE = 'D' 

WHERE LECT_NO = 1 ; 

1 row updated. 
 

 
If Jones also got a pay rise to go with his promotion, then we could have modified these 

two columns with a single UPDATE statement: 



I TECH COMPUTER EDUCATION       SQL 

110 

 

 

 

 
 
 

UPDATE LECTURERS 

SET GRADE = 'D', PAY = 28000 

WHERE LECT_NO = 1 ; 

1 row updated. 
 

 

Although the UPDATE statement allows you to modify several columns in a table, you 

cannot update multiple tables with a single command. This follows on from the fact that 

table prefixes cannot be used with the column names in the SET clause. 
 

 
Scalar expressions can be used in the SET clause as a multiplication factor for example. 

This is useful in situations where you need to change the values of a column by a preset 

amount. In the LECTURERS table for example, if it is university policy to award a set 

percentage pay increase to all the staff, we can update the PAY column by: 
 

 
UPDATE LECTURERS 

SET PAY = PAY *  1.05 ; 

6 rows updated. 
 

 
The PAY column value for all the lecturers will be multiplied by 1.05 (or in other words, a 

5% pay rise). Queries and sub queries can also be used with the UPDATE command just 

as they can with the INSERT. This enables you to define complex criteria for choosing 

exactly the rows that you want to be modified. As an example, consider this situation. 
 

 
As a result of human error, all the exam papers for subjects offered by the Engineering 

department have been marked down by 4 percent. To correct this in the EXAMS table: 
 

 
UPDATE EXAMS 

SET MARK = MARK + 4 

WHERE SUB_NO = ANY 

(SELECT SUB_NO 

FROM SUBJECTS 

WHERE DEPT_NO = 1) ; 

2 rows updated. 
 

 
The query part of this UPDATE finds all the subjects which have a value of 1 in the 

DEPT_NO field. As this is a primary key field which refers to the DEPARTMENTS table, 



I TECH COMPUTER EDUCATION       SQL 

111 

 

 

 
 

this will only apply to one department, the Engineering department. The subjects 

offered by this department are Mathematics, Engineering Drwg., and Electronics and 

are returned by the query. The UPDATE adds 4 percent to all exams in these subjects. 
 

 

The query part of the previous UPDATE requires that you know the value of the 

DEPT_NO column for the Engineering department. In most real life cases, you will not 

readily have such information at hand. This means that you will either have to run a 

separate query on the DEPARTMENTS table to get the value or alternatively, you can 

compose an UPDATE command with an additional sub-query: 
 

 
UPDATE EXAMS 

SET MARK = MARK + 4 

WHERE SUB_NO = ANY 

(SELECT SUB_NO 

FROM SUBJECTS 

WHERE DEPT_NO = 

(SELECT DEPT_NO 

FROM DEPARTMENTS 

WHERE DEPT_NAME = 'Engineering') ) ; 

2 rows updated. 
 

 
At first, you may have been puzzled at the sequence of chapters in this book. We started 

by creating tables, then went straight on to discuss how to query the (already 

populated) tables. We described how to populate and update the tables after the 

section on querying tables because in order to fully understand the SQL update 

commands, you need a firm grasp of composing SQL queries. Trying to make sense of 

the last UPDATE command without 
 

 

"Removing Rows Form Tables": 

The DELETE command. 

Sooner or later you will want to delete some of the data from your tables. This might be 

incorrect information or redundant data. SQL allows you to remove data by using the 

DELETE statement. 
 

 
DELETE allows you to remove one or several rows from tables. This command operates 

on entire rows. It does not allow you to remove individual field values. You must remove 



I TECH COMPUTER EDUCATION       SQL 

112 

 

 

 
 

an entire row or not at all. When used without a predicate, DELETE removes all the rows 

from a table. To clear the ELITE_EXAMS table of all data: 
 

 
DELETE FROM ELITE_EXAMS ; 

2 rows deleted. 
 

 
As with all the SQL update commands, before you can delete from a table, you must 

either be the table's owner or you must have been given the necessary privileges by the 

owner. 
 

 
Usually, you do not want to delete all the rows from the table. DELETE allows the use of 

the WHERE clause to selectively remove rows from a table. In the STUDENTS table, 

suppose that Wendy Wickes decided to leave the course, and we wanted to remove 

her record from the table. We can do this by: 
 

 
DELETE FROM STUDENTS 

WHERE SURNAME = 'Wickes' AND FIRST_NAME = 'Wendy Y Y W' ; 

1 row deleted. 
 

 
Although this command does indeed delete the required row from the table, it is not the 

best method. If there had been another student with the same name, than that 

student's record would also have been removed with this command. In real life 

situations, where each table might contain thousands or even hundreds of thousands of 

rows, we must be absolutely sure that only the row that we want to be removed is 

deleted. 
 

 
It is good policy to first look at the row that is to be deleted by using a SELECT query, 

with the same WHERE clause as the intended DELETE statement. To make absolutely 

sure that only the right row is deleted, it by referenced only by the primary key field in 

the DELETE statement. Thus to remove Wendy Wickes' record: 
 

 
DELETE FROM STUDENTS 

WHERE STUDENT_NO = 16 ; 

1 row deleted. 
 

This is a foolproof method of removing only the intended row from our table. As the 

STUDENT_NO field is a primary key, it is unique for each row and only Wendy Y Y W 

Wickes has a value of 16 for this column. 



I TECH COMPUTER EDUCATION       SQL 

113 

 

 

 

 

DATA INTEGRITY 
 
 
This section looks at the concepts used by SQL to restrict the information that can be 

added to the database. Restrictions are usually thought of as negative (constraints, 

limitations, confines etc). When they are applied to data integrity, they do a positive job. 

ie. that of ensuring you do not inadvertently add junk data to the database. Data 

integrity restrictions in effect, act as policemen for the database. They are responsible 

for protecting the overall integrity of the database from rogue data that may be 

introduced by INSERT and UPDATE statements. 
 

 

"Keeping the Data Tidy": 

The Basics of Data Integrity. 

By definition, a relational database is made up of interrelated tables. The relationships 

between each table being formed by foreign and primary keys. Data integrity is 

concerned with ensuring that any new data that is added to the tables is compatible 

with the existing inter-table relationships. Data integrity is implemented by applying 

certain restrictions to the data that is added to and updated in a table. These 

restrictions can be broadly divided into four categories; Non-NULL columns, data 

validity, table integrity and referential integrity. 
 

 

"Fields That Must Have Values": 

Non-NULL Columns. 

This type of integrity constraint is the easiest to implement and comply with. It is applied 

to columns that must have valid values for all rows in the table. These are usually the 

primary keys which are used to uniquely identify each row and so must have different 

values for each table row. Non-NULL columns are supported by the ANSI/ ISO standard 

and are implemented by use of the NOT NULL column modifier. 
 

 
A column must be declared as NOT NULL when the table is first created, in the CREATE 

TABLE statement. Subsequent INSERT statements that add rows to the table are 

checked by the DBMS to make sure that a value is supplied for the non-NULL declared 

column. This check also applies to UPDATE statements where the DBMS ensures that 

the proposed update supplies a value for the non-NULL column. 
 

 
Columns specified as NOT NULL are exactly that. They must contain a value that is not 



I TECH COMPUTER EDUCATION       SQL 

114 

 

 

 
 

NULL for all rows in the table. This means that you can supply a value of zero for 

numeric type columns or spaces for character type columns. In ensuring this type of 

integrity constraint, the DBMS does not check and does not care if the value supplied is 

total nonsense. For example, the SURNAME column in the STUDENTS table is defined as 

NOT NULL. But the DBMS will still allow you to insert a row into STUDENTS even if you 

specify a SURNAME value of '123QRTY456'. Obviously the surname doesn't make sense, 

but as it is a non-NULL value, the DBMS accepts it. 
 

 

"Values Must be the Right Values": 

Data Validity. 

This type of data integrity constraint addresses the problem that we touched on at the 

end of the last section. It ensures that the right values are inserted into the columns. 

The ANSI/ ISO standard provides only limited support for confirming data validity. The 

DBMS only guarantees that any data added to a column is of the same type as the 

column. Recall that the data type of each column must be specified in the CREATE 

TABLE statement. This means that if you try to add a text string to a numeric type 

column, or vice versa, then the DBMS will reject the operation. 
 

 
Data type checking still does not ensure the full validity of the data. We could still add 

the '123QRTY456' value to the SURNAME column of the STUDENTS table for example. 

The fact that the value is enclosed in single quotes tells SQL that it is a character string. 

As far as the DBMS is concerned, it is a legal value for the SURNAME field which was 

declared as CHAR(15). What we really need to ensure against such errors is a method of 

defining a range or a set of valid values for each column. Although this is not supported 

by the current ANSI/ ISO standard, many commercial SQL systems vendors provide ways 

of checking the values that are added to the table. 
 

 
Oracle, for example has data validity checking built into its data entry forms package. 

This is a separate program which checks the data values as they are entered on a form 

on the screen. The data values are thus validated before they are submitted to SQL. DB2 

also leaves the data validation to separate programs. It allows you to create external 

programs called validation procedures and assign them to each table. DB2 passes the 

proposed INSERT and UPDATE column values to the validation procedure which checks 

it against its defined parameters. Although validation procedures mean that DB2 

does not have to extend the SQL language to support validity checking, they have to be 

created by someone with programming experience. 



I TECH COMPUTER EDUCATION       SQL 

115 

 

 

 
 

"Primary key values must be unique": 

Entity  Integrity. 

A primary key in a table has the job of uniquely identifying each row in the table. It is a 

bit like the social security number that is allocated to you by the state. It uniquely 

identifies you as an individual. Just as there would be serious problems if more than 

one person was allocated the same social security number, so it is with primary keys. If 

more than one row in the table had the same value for the primary key, then the DBMS 

would not be able to distinguish between the rows and the overall integrity of the table 

would be lost. 
 

 
The requirement that primary keys must have a different value for each row is one of 

the constraints designed to maintain data integrity. In database jargon, a table is also 

known as an entity (the columns are called the attributes of this entity) and this 

constraint is called the entity integrity constraint. 
 

 
The ANSI/ ISO standard supports entity integrity by use of the PRIMARY KEY modifier. 

Primary keys are defined in the CREATE TABLE statement. The DBMS ensures that all 

INSERT and UPDATE statements that affect the primary key do not duplicate values 

that are already in the database. 
 

 

SQL Tips 

Formal support for primary keys was added to IBM's DB2 in 1988. 
 
 

"All Child Rows must have parents": 

Referential Integrity. 

Figure illustrates how primary, foreign and parent keys are used to relate tables in a 

database. The DEPT_NO field in the LECTURERS table is a foreign key which references a 

primary key of the same name in the DEPARTMENTS table. This fact by itself does not 

tell us much. The underlying concept, the reason for this linkage however, does. If we 

look solely at the LECTURERS table, then we can see that R A Jones is on seniority grade 

E and earns 24,000. We can also see that he works in department number 3. Grade E 

and 24,000 gave us solid information but what does department number 3 mean? Well, 

by itself, not much. 
 

 
However, if we know that DEPT_NO is a foreign key which references the 

DEPARTMENTS table, then we could instruct the DBMS to look up the row in the 




